120,797 research outputs found

    On symmetric commutator subgroups, braids, links and homotopy groups

    Full text link
    In this paper, we investigate some applications of commutator subgroups to homotopy groups and geometric groups. In particular, we show that the intersection subgroups of some canonical subgroups in certain link groups modulo their symmetric commutator subgroups are isomorphic to the (higher) homotopy groups. This gives a connection between links and homotopy groups. Similar results hold for braid and surface groups.Comment: 24 pages, 1 figur

    Brunnian Braids and Lie Algebras

    Full text link
    Brunnian braids have interesting relations with homotopy groups of spheres. In this work, we study the graded Lie algebra of the descending central series related to Brunnian subgroup of the pure braid group. A presentation of this Lie algebra is obtained.Comment: 21 page

    A search algorithm for a class of optimal finite-precision controller realization problems with saddle points

    No full text
    With game theory, we review the optimal digital controller realization problems that maximize a finite word length (FWL) closed-loop stability measure. For a large class of these optimal FWL controller realization problems which have saddle points, a minimax-based search algorithm is derived for finding a global optimal solution. The algorithm consists of two stages. In the first stage, the closed form of a transformation set is constructed which contains global optimal solutions. In the second stage, a subgradient approach searches this transformation set to obtain a global optimal solution. This algorithm does not suffer from the usual drawbacks associated with using direct numerical optimization methods to tackle these FWL realization problems. Furthermore, for a small class of optimal FWL controller realization problems which have no saddle point, the proposed algorithm also provides useful information to help solve them

    Charge pumping in monolayer graphene driven by a series of time-periodic potentials

    Full text link
    We applied the Floquet scattering-matrix formalism to studying the electronic transport properties in a mesoscopic Dirac system. Using the method, we investigate theoretically quantum pumping driven by a series of time-periodic potentials in graphene monolayer both in the adiabatic and non-adiabatic regimes. Our numerical results demonstrate that adding harmonic modulated potentials can break the time reversal symmetry when no voltage bias is applied to the graphene monolayer. Thus, when the system is pumped with proper dynamic parameters, these scatterers can produce a nonzero dc pumped current. We also find that the transmission is anisotropic as the incident angle is changed.Comment: 8 pages, 6 figure

    An improved closed-loop stability related measure for finite-precision digital controller realizations

    No full text
    The pole-sensitivity approach is employed to investigate the stability issue of the discrete-time control system, where a digital controller, implemented with finite word length (FWL), is used. A new stability related measure is derived, which is more accurate in estimating the closed-loop stability robustness of an FWL implemented controller than some existing measures for the pole-sensitivity analysis. This improved stability measure thus provides a better criterion to find the optimal realizations for a generic controller structure that includes output-feedback and observer-based controllers. A numerical example is used to verify the theoretical analysis and to illustrate the design procedure

    An improved closed-loop stability related measure for finite-precision digital controller realizations

    No full text
    The pole-sensitivity approach is employed to investigate the stability issue of the discrete-time control system, where a digital controller, implemented with finite word length (FWL), is used. A new stability related measure is derived, which is more accurate in estimating the closed-loop stability robustness of an FWL implemented controller than some existing measures for the pole-sensitivity analysis. This improved stability measure thus provides a better criterion to find the optimal realizations for a generic controller structure that includes output-feedback and observer-based controllers. A numerical example is used to verify the theoretical analysis and to illustrate the design procedure
    corecore