11 research outputs found

    GeohashTile: Vector Geographic Data Display Method Based on Geohash

    Get PDF
    © 2020 MDPI AG. All rights reserved. In the development of geographic information-based applications for mobile devices, achieving better access speed and visual effects is the main research aim. In this paper, we propose a new geographic data display method based on Geohash, namely GeohashTile, to improve the performance of traditional geographic data display methods in data indexing, data compression, and the projection of different granularities. First, we use the Geohash encoding system to represent coordinates, as well as to partition and index large-scale geographic data. The data compression and tile encoding is accomplished by Geohash. Second, to realize a direct conversion between Geohash and screen-pixel coordinates, we adopt the relative position projection method. Finally, we improve the calculation and rendering efficiency by using the intermediate result caching method. To evaluate the GeohashTile method, we have implemented the client and the server of the GeohashTile system, which is also evaluated in a real-world environment. The results show that Geohash encoding can accurately represent latitude and longitude coordinates in vector maps, while the GeohashTile framework has obvious advantages when requesting data volume and average load time compared to the state-of-the-art GeoTile system

    Tirofiban for Stroke without Large or Medium-Sized Vessel Occlusion

    Get PDF
    The effects of the glycoprotein IIb/IIIa receptor inhibitor tirofiban in patients with acute ischemic stroke but who have no evidence of complete occlusion of large or medium-sized vessels have not been extensively studied. In a multicenter trial in China, we enrolled patients with ischemic stroke without occlusion of large or medium-sized vessels and with a National Institutes of Health Stroke Scale score of 5 or more and at least one moderately to severely weak limb. Eligible patients had any of four clinical presentations: ineligible for thrombolysis or thrombectomy and within 24 hours after the patient was last known to be well; progression of stroke symptoms 24 to 96 hours after onset; early neurologic deterioration after thrombolysis; or thrombolysis with no improvement at 4 to 24 hours. Patients were assigned to receive intravenous tirofiban (plus oral placebo) or oral aspirin (100 mg per day, plus intravenous placebo) for 2 days; all patients then received oral aspirin until day 90. The primary efficacy end point was an excellent outcome, defined as a score of 0 or 1 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days. Secondary end points included functional independence at 90 days and a quality-of-life score. The primary safety end points were death and symptomatic intracranial hemorrhage. A total of 606 patients were assigned to the tirofiban group and 571 to the aspirin group. Most patients had small infarctions that were presumed to be atherosclerotic. The percentage of patients with a score of 0 or 1 on the modified Rankin scale at 90 days was 29.1% with tirofiban and 22.2% with aspirin (adjusted risk ratio, 1.26; 95% confidence interval, 1.04 to 1.53, P = 0.02). Results for secondary end points were generally not consistent with the results of the primary analysis. Mortality was similar in the two groups. The incidence of symptomatic intracranial hemorrhage was 1.0% in the tirofiban group and 0% in the aspirin group. In this trial involving heterogeneous groups of patients with stroke of recent onset or progression of stroke symptoms and nonoccluded large and medium-sized cerebral vessels, intravenous tirofiban was associated with a greater likelihood of an excellent outcome than low-dose aspirin. Incidences of intracranial hemorrhages were low but slightly higher with tirofiban

    An Online Debugging Tool for Rust-based Operating Systems

    No full text
    Zhiyang Chen describes his experience building (in conjunction with paper co-authors Ye Yu, Zhengfan Li and Jingbang Wu) an interactive kernel debugger for the rCore Rust kernel. The debugger is implemented as a VSCode front-end plugin against the GDB back-end, targeted at the web version of VSCode (but also running on desktop). The debugger provides the full capabilities of GDB for both user and kernel code, with the convenience of the VSCode interface

    On the Design and Implementation of the External Data Integrity Tracking and Verification System for Stream Computing System in IoT

    No full text
    Data integrity is a prerequisite for ensuring data availability of IoT data and has received extensive attention in the field of IoT big data security. Stream computing systems are widely used in the field of IoT for real-time data acquisition and computing. However, the real-time, volatility, suddenness, and disorder of stream data make data integrity verification difficult. According to the survey, there is no mature and universal solution. To solve this issue, we constructed a data integrity verification algorithm scheme of the stream computing system (S-DIV) by utilizing homomorphic message authentication code and pseudo-random function security assumption. Furthermore, based on S-DIV, an external data integrity tracking and verification system is constructed to track and analyze the message data stream in real time. By verifying the data integrity of message during the whole life cycle, the problem of data corruption or data loss can be found in time, and error alarm and message recovery can be actively implemented. Then, we conduct the formal security analysis under the standard model and, finally, implement the S-DIV scheme in simulation environment. Experimental results show that the scheme can guarantee data integrity in an acceptable time without affecting the efficiency of the original system

    Geohash-Based Rapid Query Method of Regional Transactions in Blockchain for Internet of Vehicles

    Get PDF
    Many researchers have introduced blockchain into the Internet of Vehicles (IoV) to support trading or other authentication applications between vehicles. However, the traditional blockchain cannot well support the query of transactions that occur in a specified area which is important for vehicle users since they are bound to the geolocations. Therefore, the querying efficiency of the geolocation attribute of transactions is vital for blockchain-based applications. Existing work does not well handle the geolocation of vehicles in the blockchain, and thus the querying efficiency is questionable. In this paper, we design a rapid query method of regional transactions in blockchain for IoV, including data structures and query algorithms. The main idea is to utilize the Geohash code to represent the area and serve as the key for transaction indexing and querying, and the geolocation is marked as one of the attributes of transactions in the blockchain. To further verify and evaluate the proposed design, on the basis of the implementation of Ethereum, which is a well-known blockchain, the results show that the proposed design achieves significantly better-querying speed than Ethereum

    Vibration-based Terrain Classification Recognition Using a Six-axis Accelerometer

    No full text
    Aging is a key problem in our daily life which demands more technology such as the terrain classification recognition for the detailed path planning. In this article, a six-axis accelerometer was placed on the base of a walking stick to capture walking gait vibration information. The signal features in the collected information were used to reflect the terrain. We used a matching tracking method to decompose the signal data into linear combinations of Gabor atoms and a joint time-frequency analysis method to perform analysis on the topographic features in a three-dimensional space. Three types of terrains were classified from space-time data. Results show that the proposed algorithm could achieve an average accuracy rate of 88.6%, which is 4% higher than conventional methods

    Metabolomic Analysis on the Mechanism of Nanoselenium Biofortification Improving the Siraitia grosvenorii Nutritional and Health Value

    No full text
    Nanoselenium (nano-Se) foliar application is crucial for enhancing plant health. However, the mechanism by which nano-Se biofortification promotes the nutritional components of Siraitia grosvenorii remains unclear. In this study, nano-Se foliar application increased the carbohydrate and amino acid contents, including glucose (23.6%), fructose (39.7%), sucrose (60.6%), tryptophan (104.5%), glycine (85.9%), tyrosine (78.4%), phenylalanine (60.1%), glutamic acid (63.4%), and proline (52.5%). Nano-Se application enhanced apigenin (3.8 times), syringic acid (0.7 times), and 4-hydroxy-3,5-dimethoxycinnamic acid (1.4 times) of the phenylpropane biosynthesis pathways. Importantly, the SgCDS (31.1%), CYP-P450 (39.1%), and UGT (24.6%) were induced by nano-Se, which enhanced the mogroside V content (16.2%). Compared to the control, nano-Se treatment dramatically enhanced aromatic substances, including 2-butanone (51.9%), methylpropanal (146.3%), n-nonanal dimer (141.7%), pentanal (52.5%), and 2-pentanone (46.0%). In summary, nano-Se improves S. grosvenorii quality by increasing nutrients and volatile organic compounds and adjusting the phenylpropane pathway
    corecore