7,752 research outputs found
Preferential regulation of stably expressed genes in the human genome suggests a widespread expression buffering role of microRNAs
In this study, we comprehensively explored the stably expressed genes (SE genes) and fluctuant genes (FL genes) in the human genome by a meta-analysis of large scale microarray data. We found that these genes have distinct function distributions. miRNA targets are shown to be significantly enriched in SE genes by using propensity analysis of miRNA regulation, supporting the hypothesis that miRNAs can buffer whole genome expression fluctuation. The expression-buffering effect of miRNA is independent of the target site number within the 3'-untranslated region. In addition, we found that gene expression fluctuation is positively correlated with the number of transcription factor binding sites in the promoter region, which suggests that coordination between transcription factors and miRNAs leads to balanced responses to external perturbations
Identification of N -Linked Glycosylation Sites in Human Testis Angiotensin-converting Enzyme and Expression of an Active Deglycosylated Form
The sites of glycosylation of Chinese hamster ovary cell expressed testicular angiotensin-converting enzyme (tACE) have been determined by matrix-assisted laser desorption ionization/time of flight/mass spectrometry of peptides generated by proteolytic and cyanogen bromide digestion. Two of the seven potential N-linked glycosylation sites, Asn90 and Asn109, were found to be fully glycosylated by analysis of peptides before and after treatment with a series of glycosidases and with endoproteinase Asp-N. The mass spectra of the glycopeptides exhibit characteristic clusters of peaks which indicate the N-linked glycans in tACE to be mostly of the biantennary, fucosylated complex type. This structural information was used to demonstrate that three other sites, Asn155, Asn337, and Asn586, are partially glycosylated, whereas Asn72 appears to be fully glycosylated. The only potential site that was not modified is Asn620. Sequence analysis of tryptic peptides obtained from somatic ACE (human kidney) identified six glycosylated and one unglycosylated Asn. Only one of these glycosylation sites had a counterpart in tACE. Comparison of the two proteins reveals a pattern in which amino-terminal N-linked sites are preferred. The functional significance of glycosylation was examined with a tACE mutant lacking the O-glycan-rich first amino-terminal 36 residues and truncated at Ser625. When expressed in the presence of the alpha-glucosidase I inhibitor N-butyldeoxynojirimycin and treated with endoglycosidase H to remove all but the terminal N-acetylglucosamine residues, it retained full enzymatic activity, was electrophoretically homogeneous, and is a good candidate for crystallographic studies
Protein structure generation via folding diffusion
The ability to computationally generate novel yet physically foldable protein
structures could lead to new biological discoveries and new treatments
targeting yet incurable diseases. Despite recent advances in protein structure
prediction, directly generating diverse, novel protein structures from neural
networks remains difficult. In this work, we present a new diffusion-based
generative model that designs protein backbone structures via a procedure that
mirrors the native folding process. We describe protein backbone structure as a
series of consecutive angles capturing the relative orientation of the
constituent amino acid residues, and generate new structures by denoising from
a random, unfolded state towards a stable folded structure. Not only does this
mirror how proteins biologically twist into energetically favorable
conformations, the inherent shift and rotational invariance of this
representation crucially alleviates the need for complex equivariant networks.
We train a denoising diffusion probabilistic model with a simple transformer
backbone and demonstrate that our resulting model unconditionally generates
highly realistic protein structures with complexity and structural patterns
akin to those of naturally-occurring proteins. As a useful resource, we release
the first open-source codebase and trained models for protein structure
diffusion
Fundamentals of FGF19 & FGF21 Action In Vitro and In Vivo
Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of βKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the regulation of energy balance
Recommended from our members
Depth versus surface: A critical review of subdural and depth electrodes in intracranial electroencephalographic studies
Intracranial electroencephalographic (IEEG) recording, using subdural electrodes (SDEs) and stereoelectroencephalography (SEEG), plays a pivotal role in localizing the epileptogenic zone (EZ). SDEs, employed for superficial cortical seizure foci localization, provide information on two-dimensional seizure onset and propagation. In contrast, SEEG, with its three-dimensional sampling, allows exploration of deep brain structures, sulcal folds, and bihemispheric networks. SEEG offers the advantages of fewer complications, better tolerability, and coverage of sulci. Although both modalities allow electrical stimulation, SDE mapping can tessellate cortical gyri, providing the opportunity for a tailored resection. With SEEG, both superficial gyri and deep sulci can be stimulated, and there is a lower risk of afterdischarges and stimulation-induced seizures. Most systematic reviews and meta-analyses have addressed the comparative effectiveness of SDEs and SEEG in localizing the EZ and achieving seizure freedom, although discrepancies persist in the literature. The combination of SDEs and SEEG could potentially overcome the limitations inherent to each technique individually, better delineating seizure foci. This review describes the strengths and limitations of SDE and SEEG recordings, highlighting their unique indications in seizure localization, as evidenced by recent publications. Addressing controversies in the perceived usefulness of the two techniques offers insights that can aid in selecting the most suitable IEEG in clinical practice
Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector
In 2008 the blazar Markarian 421 entered a very active phase and was one of
the brightest sources in the sky at TeV energies, showing frequent flaring
episodes. Using the data of ARGO-YBJ, a full coverage air shower detector
located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at
gamma ray energies E > 0.3 TeV during the whole year. The observed flux was
variable, with the strongest flares in March and June, in correlation with
X-ray enhanced activity. While during specific episodes the TeV flux could be
several times larger than the Crab Nebula one, the average emission from day 41
to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6)
10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards.
This paper concentrates on the flares occurred in the first half of June.
This period has been deeply studied from optical to 100 MeV gamma rays, and
partially up to TeV energies, since the moonlight hampered the Cherenkov
telescope observations during the most intense part of the emission. Our data
complete these observations, with the detection of a signal with a statistical
significance of 3.8 standard deviations on June 11-13, corresponding to a gamma
ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed
differential spectrum, corrected for the intergalactic absorption, can be
represented by a power law with an index alpha = -2.1 extending up to several
TeV. The spectrum slope is fully consistent with previous observations
reporting a correlation between the flux and the spectral index, suggesting
that this property is maintained in different epochs and characterizes the
source emission processes.Comment: Accepted for publication on ApJ
Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment
The sun blocks cosmic ray particles from outside the solar system, forming a
detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ
experiment in Tibet. Because the cosmic ray particles are positive charged, the
magnetic field between the sun and the earth deflects them from straight
trajectories and results in a shift of the shadow from the true location of the
sun. Here we show that the shift measures the intensity of the field which is
transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure
Long-term monitoring of the TeV emission from Mrk 421 with the ARGO-YBJ experiment
ARGO-YBJ is an air shower detector array with a fully covered layer of
resistive plate chambers. It is operated with a high duty cycle and a large
field of view. It continuously monitors the northern sky at energies above 0.3
TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period
from 2007 November to 2010 February. This source was observed by the
satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray
band. Mrk 421 was especially active in the first half of 2008. Many flares are
observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux
observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag
between the X-ray and gamma-ray photons longer than 1 day is found. The
evolution of the spectral energy distribution is investigated by measuring
spectral indices at four different flux levels. Hardening of the spectra is
observed in both X-ray and gamma-ray bands. The gamma-ray flux increases
quadratically with the simultaneously measured X-ray flux. All these
observational results strongly favor the synchrotron self-Compton process as
the underlying radiative mechanism.Comment: 30 pages, 8 figure
Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction
It is difficult to find the optimal sparse solution of a manifold learning
based dimensionality reduction algorithm. The lasso or the elastic net
penalized manifold learning based dimensionality reduction is not directly a
lasso penalized least square problem and thus the least angle regression (LARS)
(Efron et al. \cite{LARS}), one of the most popular algorithms in sparse
learning, cannot be applied. Therefore, most current approaches take indirect
ways or have strict settings, which can be inconvenient for applications. In
this paper, we proposed the manifold elastic net or MEN for short. MEN
incorporates the merits of both the manifold learning based dimensionality
reduction and the sparse learning based dimensionality reduction. By using a
series of equivalent transformations, we show MEN is equivalent to the lasso
penalized least square problem and thus LARS is adopted to obtain the optimal
sparse solution of MEN. In particular, MEN has the following advantages for
subsequent classification: 1) the local geometry of samples is well preserved
for low dimensional data representation, 2) both the margin maximization and
the classification error minimization are considered for sparse projection
calculation, 3) the projection matrix of MEN improves the parsimony in
computation, 4) the elastic net penalty reduces the over-fitting problem, and
5) the projection matrix of MEN can be interpreted psychologically and
physiologically. Experimental evidence on face recognition over various popular
datasets suggests that MEN is superior to top level dimensionality reduction
algorithms.Comment: 33 pages, 12 figure
Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment
We report the observation of TeV gamma-rays from the Cygnus region using the
ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources
are located in this region including the two bright extended MGRO J2019+37 and
MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is
the most significant source apart from the Crab Nebula. No signal from MGRO
J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper
limits at 90% confidence level for all the events above 600 GeV with medium
energy of 3 TeV are lower than the Milagro flux, implying that the source might
be variable and hard to be identified as a pulsar wind nebula. The only
statistically significant (6.4 standard deviations) gamma-ray signal is found
from MGRO J2031+41, with a flux consistent with the measurement by Milagro.Comment: 14 pages, 4 figure
- …