33 research outputs found

    Pharmacological Characterization of [3H]CHIBA-3007 Binding to Glycine Transporter 1 in the Rat Brain

    Get PDF
    Glycine transporter-1 (GlyT-1) in glial cells regulates extracellular levels of glycine, which acts as an obligatory co-agonist at the N-methyl-D-aspartate (NMDA) receptors in the brain. In the present study, we developed a novel radioligand, [3H]3-chloro-N-((S)-((R)-1-methylpiperidin-2-yl)(thiophen- 3-yl)methyl)-4- (trifluoromethyl)picolinamide ([3H]CHIBA-3007), for studying GlyT-1 in the brain. The presence of a single saturable high-affinity binding component for [3H]CHIBA-3007 binding to the rat brain membranes was detected. Scatchard analysis revealed an apparent equilibrium dissociation constant (Kd) of 1.61±0.16 nM and a maximal number of binding sites (Bmax) of 692.8±22.8 fmol/mg protein (mean ± SEM, n = 3). The specific binding of [3H]CHIBA-3007 was inhibited by a number of GlyT-1 inhibitors, such as CHIBA-3007, desmethyl-CHIBA-3007, CHIBA-3008, SSR504734, NFPS/ALX5407, LY2365109 and Org24598, consistent with the pharmacological profiles of GlyT-1 inhibitors. Interestingly, the potency of eight GlyT-1 inhibitors (CHIBA-3007, desmethyl-CHIBA-3007, NFPS/ALX5407, LY2365109, Org24598, SSR504734, sarcosine, and glycine) for blocking in vitro specific binding of [3H]CHIBA-3007 was significantly correlated with the potency of these inhibitors for inhibiting [14C]glycine uptake in the rat brain membranes. In contrast, the GlyT-2 inhibitor ALX1393 exhibited very weak for [3H]CHIBA-3007 binding. Furthermore, the regional distribution of [3H]CHIBA-3007 binding in the rat brain was similar to the previously reported distribution of GlyT-1. The present findings suggest that [3H]CHIBA-3007 would be a useful new radioligand for studying GlyT-1 in the brain

    EXPERIMENTAL STUDY ON THE STABILITY OF SURROUNDING ROCK IN TUNNEL BLASTING CONSTRUCTION

    No full text
    In this study, criteria and blasting technologies are introduced in order to control the stability of surrounding rock of tunnel built using drill-and-blast safety. The paper is composed of three parts, namely, a blast vibration propagation law in roof surrounding rock in close proximity to tunnel face, two formulae to calculate particle critical vibration velocity of shotcrete and key structural element at the roof of tunnel, and innovative technologies of tunnel blasting. The blast vibration propagation law is the base to control the stability of surrounding rock during tunnel blasting. Based on Morhr-Coulomb criterion and the dynamic analysis, two formulae to calculate the critical particle vibration velocity are proposed. Based on a series of trial blasts using electronic detonators, two innovative blasting technologies are derived. One is the blast holes detonated one by one by using electronic detonator, and another is the blast holes detonated by combining initiation system of electronic detonators and nonel detonators. The use of electronic detonators in tunnel blasting not only leads to a smaller blast vibration but also to a smaller extent of the EDZ (excavation damaged zone)

    EXPERIMENTAL STUDY ON THE STABILITY OF SURROUNDING ROCK IN TUNNEL BLASTING CONSTRUCTION

    No full text
    In this study, criteria and blasting technologies are introduced in order to control the stability of surrounding rock of tunnel built using drill-and-blast safety. The paper is composed of three parts, namely, a blast vibration propagation law in roof surrounding rock in close proximity to tunnel face, two formulae to calculate particle critical vibration velocity of shotcrete and key structural element at the roof of tunnel, and innovative technologies of tunnel blasting. The blast vibration propagation law is the base to control the stability of surrounding rock during tunnel blasting. Based on Morhr-Coulomb criterion and the dynamic analysis, two formulae to calculate the critical particle vibration velocity are proposed. Based on a series of trial blasts using electronic detonators, two innovative blasting technologies are derived. One is the blast holes detonated one by one by using electronic detonator, and another is the blast holes detonated by combining initiation system of electronic detonators and nonel detonators. The use of electronic detonators in tunnel blasting not only leads to a smaller blast vibration but also to a smaller extent of the EDZ (excavation damaged zone)

    Mapping urban scenescapes of ethnicity: A study of Tibetan cultural scenes in downtown Chengdu, China

    No full text
    Urban scenescapes are significantly influenced by cultural groups representing different ethnicities. In order to foster a cohesive and inclusive urban environment, it is crucial to comprehend the scale, type, and distribution of scenes associated with ethnicity. With the aim of exploring Tibetan cultural scenescapes in Chinese cities, this study employed the theory of scenes to develop a socio-spatial research method. By focusing on the five downtown districts of Chengdu as the study area, the study evaluated the effectiveness of urban facilities in expressing Tibetan culture and delineated the scenescapes related to Tibetan ethnicity in the designated region. This study’s findings indicate the following: 1) different urban facilities exhibited notable variation in their cultural performance; 2) currently, seven distinct scene clusters showcase Tibetan culture in downtown Chengdu; 3) these scene clusters can be categorised into three types. Based on the findings, this study has proposed strategies for planning scene clusters and designing facilities, with the overarching objective of fostering an inclusive and multicultural urban environment

    Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells

    No full text
    Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR) signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist, affected activities of matrix metalloproteinase (MMP) and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with nicotine at different concentrations (0, 1, 10, and 100 ng/ml) for 0–120 min. Nicotine markedly stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and c-Jun in RAW264.7 cells. Pretreatment with U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP-) 1, and regulated upon activation normal T cell expressed and secreted (RANTES). Similarly, nicotine treatment also increased phosphorylation of c-Jun and expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987, nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited. Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated. Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal aortic aneurysm

    Kinetic Characteristics of Curcumin and Germacrone in Rat and Human Liver Microsomes: Involvement of CYP Enzymes

    No full text
    Curcumin and germacrone, natural products present in the Zingiberaceae family of plants, have several biological properties. Among these properties, the anti-NSCLC cancer action is noteworthy. In this paper, kinetics of the two compounds in rat liver microsomes (RLMs), human liver microsomes (HLMs), and cytochrome P450 (CYP) enzymes (CYP3A4, 1A2, 2E1, and 2C19) in an NADPH-generating system in vitro were evaluated by UP-HPLC–MS/MS (ultrahigh-pressure liquid chromatography–tandem mass spectrometry). The contents of four cytochrome P450 (CYP) enzymes, adjusting by the compounds were detected using Western blotting in vitro and in vivo. The t1/2 of curcumin was 22.35 min in RLMs and 173.28 min in HLMs, while 18.02 and 16.37 min were gained for germacrone. The Vmax of curcumin in RLMs was about 4-fold in HLMs, meanwhile, the Vmax of germacrone in RLMs was similar to that of HLMs. The single enzyme t1/2 of curcumin was 38.51 min in CYP3A4, 301.4 min in 1A2, 69.31 min in 2E1, 63.01 min in 2C19; besides, as to the same enzymes, t1/2 of germacrone was 36.48 min, 86.64 min, 69.31 min, and 57.76 min. The dynamic curves were obtained by reasonable experimental design and the metabolism of curcumin and germacrone were selected in RLMs/HLMs. The selectivities in the two liver microsomes differed in degradation performance. These results meant that we should pay more attention to drugs in clinical medication–drug and drug–enzyme interactions

    Formation Mechanism and Control Technology of an Excavation Damage Zone in Tunnel-Surrounding Rock

    No full text
    Loosened rock circle is formed around the tunnel when the tunnel is constructed by the drilling and blasting method. The size of the loosened rock circle around the tunnel and the degree of internal rock fragmentation has an important influence on the support parameters, durability, and safety of the tunnel. Firstly, referencing an existing tunnel project, blasting tests using nonelectronic and electronic detonators were carried out to determine the influence of blasting construction on the scope of the rock loose circle and the degree of rock fragmentation. Then, a numerical simulation was used to study the contribution of the blasting impact and surrounding rock stress redistribution on the loosened rock circle around the tunnel. The results showed that the range of the loosened rock circle around the tunnel generated by the normal blasting of nonelectronic detonators was 1.5~2.3 m, and the wave velocity of the rock mass in the loosened rock circle around the tunnel decreased to 23~36%. The size of the loosened rock circle around the tunnel generated by the blasting impact was 0.66 m, accounting for 33% of the range of the loosened rock circle around the tunnel. The range of the loosened rock circle around the tunnel produced by electronic detonator blasting was 0~1.4 m. The wave velocity of the rock mass in the loosened rock circle around the tunnel decreased to 12~17%. The range of the loosened rock circle around the tunnel was approximately 60~76% of that of detonator blasting, and the broken degree of the surrounding rock in the loosened rock circle around the tunnel was small. The research results can provide a reference for the optimization design of preliminary support parameters of tunnels, such as anchors and steel arches in blasting construction
    corecore