1,023 research outputs found

    Income Inequality, Status Seeking, and Consumption

    Get PDF
    Using the Chinese urban household survey data between 1997 and 2006, we find that income inequality has a negative (positive) impact on households’ consumption (savings), even after we control for family income. We argue that people save to improve their social status when social status is associated with pecuniary and non-pecuniary benefits. Rising income inequality can strengthen the incentives of status-seeking savings by increasing the benefit of improving status and enlarging the wealth level that is required for status upgrading. We also find that the negative effect of income inequality on consumption is stronger for poorer and younger people, and income inequality stimulates more education investment, which are consistent with the status seeking hypothesis.income inequality; social status; consumption and savings; status seeking; education investment

    Robot Introspection with Bayesian Nonparametric Vector Autoregressive Hidden Markov Models

    Full text link
    Robot introspection, as opposed to anomaly detection typical in process monitoring, helps a robot understand what it is doing at all times. A robot should be able to identify its actions not only when failure or novelty occurs, but also as it executes any number of sub-tasks. As robots continue their quest of functioning in unstructured environments, it is imperative they understand what is it that they are actually doing to render them more robust. This work investigates the modeling ability of Bayesian nonparametric techniques on Markov Switching Process to learn complex dynamics typical in robot contact tasks. We study whether the Markov switching process, together with Bayesian priors can outperform the modeling ability of its counterparts: an HMM with Bayesian priors and without. The work was tested in a snap assembly task characterized by high elastic forces. The task consists of an insertion subtask with very complex dynamics. Our approach showed a stronger ability to generalize and was able to better model the subtask with complex dynamics in a computationally efficient way. The modeling technique is also used to learn a growing library of robot skills, one that when integrated with low-level control allows for robot online decision making.Comment: final version submitted to humanoids 201

    Fast, Robust, and Versatile Event Detection through HMM Belief State Gradient Measures

    Full text link
    Event detection is a critical feature in data-driven systems as it assists with the identification of nominal and anomalous behavior. Event detection is increasingly relevant in robotics as robots operate with greater autonomy in increasingly unstructured environments. In this work, we present an accurate, robust, fast, and versatile measure for skill and anomaly identification. A theoretical proof establishes the link between the derivative of the log-likelihood of the HMM filtered belief state and the latest emission probabilities. The key insight is the inverse relationship in which gradient analysis is used for skill and anomaly identification. Our measure showed better performance across all metrics than related state-of-the art works. The result is broadly applicable to domains that use HMMs for event detection.Comment: 8 pages, 7 figures, double col, ieee conference forma

    Recovering from External Disturbances in Online Manipulation through State-Dependent Revertive Recovery Policies

    Full text link
    Robots are increasingly entering uncertain and unstructured environments. Within these, robots are bound to face unexpected external disturbances like accidental human or tool collisions. Robots must develop the capacity to respond to unexpected events. That is not only identifying the sudden anomaly, but also deciding how to handle it. In this work, we contribute a recovery policy that allows a robot to recovery from various anomalous scenarios across different tasks and conditions in a consistent and robust fashion. The system organizes tasks as a sequence of nodes composed of internal modules such as motion generation and introspection. When an introspection module flags an anomaly, the recovery strategy is triggered and reverts the task execution by selecting a target node as a function of a state dependency chart. The new skill allows the robot to overcome the effects of the external disturbance and conclude the task. Our system recovers from accidental human and tool collisions in a number of tasks. Of particular importance is the fact that we test the robustness of the recovery system by triggering anomalies at each node in the task graph showing robust recovery everywhere in the task. We also trigger multiple and repeated anomalies at each of the nodes of the task showing that the recovery system can consistently recover anywhere in the presence of strong and pervasive anomalous conditions. Robust recovery systems will be key enablers for long-term autonomy in robot systems. Supplemental info including code, data, graphs, and result analysis can be found at [1].Comment: 8 pages, 8 figures, 1 tabl

    Self-mapping degrees of torus bundles and torus semi-bundles

    Get PDF
    Each closed oriented 3-manifold M is naturally associated with a set of integers D(M), the degrees of all self-maps on M. D(M) is determined for each torus bundle and semi-bundle M. The structure of torus semi-bundle is studied in detail. The paper is a part of a project to determine D(M) for all 3-manifolds in Thurston's picture.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000277823900008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701MathematicsSCI(E)6ARTICLE1131-1554
    • …
    corecore