126 research outputs found

    Exploiting Point-Wise Attention in 6D Object Pose Estimation Based on Bidirectional Prediction

    Full text link
    Traditional geometric registration based estimation methods only exploit the CAD model implicitly, which leads to their dependence on observation quality and deficiency to occlusion. To address the problem,the paper proposes a bidirectional correspondence prediction network with a point-wise attention-aware mechanism. This network not only requires the model points to predict the correspondence but also explicitly models the geometric similarities between observations and the model prior. Our key insight is that the correlations between each model point and scene point provide essential information for learning point-pair matches. To further tackle the correlation noises brought by feature distribution divergence, we design a simple but effective pseudo-siamese network to improve feature homogeneity. Experimental results on the public datasets of LineMOD, YCB-Video, and Occ-LineMOD show that the proposed method achieves better performance than other state-of-the-art methods under the same evaluation criteria. Its robustness in estimating poses is greatly improved, especially in an environment with severe occlusions

    THz ISAC: A Physical-Layer Perspective of Terahertz Integrated Sensing and Communication

    Full text link
    The Terahertz (0.1-10 THz) band holds enormous potential for supporting unprecedented data rates and millimeter-level accurate sensing thanks to its ultra-broad bandwidth. Terahertz integrated sensing and communication (ISAC) is viewed as a game-changing technology to realize connected intelligence in 6G and beyond systems. In this article, challenges from THz channel and transceiver perspectives, as well as difficulties of ISAC are elaborated. Motivated by these challenges, THz ISAC channels are studied in terms of channel types, measurement and models. Moreover, four key signal processing techniques to unleash the full potential of THz ISAC are investigated, namely, waveform design, receiver processing, narrowbeam management, and localization. Quantitative studies demonstrate the benefits and performance of the state-of-the-art signal processing methods. Finally, open problems and potential solutions are discussed

    Hydrocarbon Detection Based on Phase Decomposition in Chaoshan Depression, Northern South China Sea

    Get PDF
    Located in the northern South China Sea, Chaoshan Depression is mainly a residual Mesozoic depression, with a construction of Meso-Cenozoic strata over 7000m thick and good hydrocarbon accumulation conditions. Amplitude attribute of -90°phase component derived by phase decomposition is employed to detect Hydrocarbon in the zone of interest (ZOI) in Chaoshan Depression. And it is found that there are evident amplitude anomalies occurring around ZOI. Phase decomposition is applied to forward modeling results of the ZOI, and high amplitudes occur on the -90°phase component more or less when ZOI is charged with hydrocarbon, which shows that the amplitude abnormality in ZOI is probably caused by oil and gas accumulation

    Inverse altitude effect disputes the theoretical foundation of stable isotope paleoaltimetry

    Get PDF
    Stable isotope paleoaltimetry that reconstructs paleoelevation requires stable isotope (δD or δ18O) values to follow the altitude effect. Some studies found that the δD or δ18O values of surface isotopic carriers in some regions increase with increasing altitude, which is defined as an “inverse altitude effect” (IAE). The IAE directly contradicts the basic theory of stable isotope paleoaltimetry. However, the causes of the IAE remain unclear. Here, we explore the mechanisms of the IAE from an atmospheric circulation perspective using δD in water vapor on a global scale. We find that two processes cause the IAE: (1) the supply of moisture with higher isotopic values from distant source regions, and (2) intense lateral mixing between the lower and mid-troposphere along the moisture transport pathway. Therefore, we caution that the influences of those two processes need careful consideration for different mountain uplift stages before using stable isotope palaeoaltimetry

    Salvianolic acid B plays an anti-obesity role in high fat diet-induced obese mice by regulating the expression of mRNA, circRNA, and lncRNA

    Get PDF
    Background Adipose tissue plays a central role in obesity-related metabolic diseases such as type 2 diabetes. Salvianolic acid B (Sal B), a water-soluble ingredient derived from Salvia miltiorrhiza, has been shown to reduce obesity and obesity-related metabolic diseases by suppressing adipogenesis. However, the role of Sal B in white adipose tissue (WAT) is not yet clear. Methods Illumina Hiseq 4000 was used to study the effects of Sal B on the expression of long non-coding RNA (lncRNA) and circular RNA (circRNA) in epididymal white adipose tissue induced by a high fat diet in obese mice. Results RNA-Seq data showed that 234 lncRNAs, 19 circRNAs, and 132 mRNAs were differentially expressed in WAT under Sal B treatment. The up-regulated protein-coding genes in WAT of the Sal B-treated group were involved in the insulin resistance pathway, while the down-regulated genes mainly participated in the IL-17 signaling pathway. Other pathways may play an important role in the formation and differentiation of adipose tissue, such as B cell receptor signaling. Analysis of the lncRNA–mRNA network provides potential targets for lncRNAs in energy metabolism. We speculate that Sal B may serve as a potential therapeutic approach for obesity

    Brief communication: An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau

    Get PDF
    On 22 March 2021, a ~50 M m3 ice-rock avalanche occurred from 6500 m asl in the Sedongpu basin, southeastern Tibet. The avalanche transformed into a highly mobile flow which temporarily blocked the Yarlung Tsangpo river. The avalanche flow lasted ~5 minutes and produced substantial geomorphological reworking. This event, and previous ones from the basin, occurred concurrently with, or shortly after recorded positive air temperature anomalies. The occurrence of future large mass flows from the basin cannot be ruled out, and their impacts must be carefully considered given implications for sustainable hydropower and associated socioeconomic development in the region

    An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau

    Get PDF
    On 22 March 2021, an approximately 50 Mm3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. The avalanche transformed into a highly mobile mass flow which temporarily blocked the Yarlung Tsangpo river. The avalanche flow lasted ∼ 5 min and produced substantial geomorphological reworking. This event, and previous ones from the basin, occurred concurrently with, or shortly after, positive seasonal air temperature anomalies. The occurrence of future large mass flows from the basin cannot be ruled out, and their impacts must be carefully considered given implications for sustainable hydropower and associated socioeconomic development in the region

    Controls on Stable Water Isotopes in Monsoonal Precipitation Across the Bay of Bengal: Atmosphere and Surface Analysis

    Get PDF
    Stable hydrogen isotopes in monsoonal precipitation (δDp) at three sites (Port Blair, Barisal and Darjeeling) reveal the factors governing δDp variations over a south-north gradient across the Bay of Bengal. We found that the δDp at each site continuously decreases from May to September and these trends become more pronounced from south to north. The decreasing trends of downstream δDp closely follow the decreasing trends of upstream stable hydrogen isotopes in water vapor (δDv), which indicates that upstream δDv properties shape initial spatiotemporal patterns of the downstream δDp (“shaping effect”). Additionally, our results demonstrate that, during moisture transport, upstream vertical air motions (convection and downward motion) and topographic relief magnify the amplitude of the decreasing trends of downstream δD (“magnifying effect”). Our findings imply that upstream δD properties and relevant atmospheric and pv topographical conditions along the moisture transport pathway need to be considered collectively to better interpret paleoclimate records

    Discovery of Diverse Rodent and Bat Pestiviruses With Distinct Genomic and Phylogenetic Characteristics in Several Chinese Provinces

    Get PDF
    Bats and rodents are widely distributed worldwide and can be native or intermediate reservoirs of many important zoonotic viruses. Pestiviruses are a group of virus species of the genus Pestivirus under the family Flaviviridae that can infect a wide variety of artiodactylous hosts, including swine and ruminants. Two classic types of pestiviruses, bovine viral diarrhea virus and classical swine fever virus, are important causative agents of mild-to-severe disease in bovine and swine hosts, respectively, and cause tremendous economic losses in these industries. Recent reports revealed that bats and rodents could also act as natural hosts of pestiviruses and an atypical porcine pestivirus, which cause disease in piglets, showed a close genetic relationship with a specific bat pestivirus, RaPestV-1. This study aimed to describe the detection and characterization of novel pestiviruses from bats and rodents in different locations by analyzing the available bat and rodent virome data from throughout China. Two bat pestivirus species and four rodent pestivirus species that are distinct from other known viruses were identified and sequenced. These viruses were identified from two bat species and four rodent species in different Chinese provinces. There were two distinct lineages present in these viruses, that differ from artiodactylous pestivirus. These findings expand our understanding of the genetic diversity of pestiviruses in bats and rodents and suggest the presence of a diverse set of pestiviruses in non-artiodactylous hosts. This study may provide new insight for the prevention of future viral disease outbreaks originating from bats and rodents
    corecore