18 research outputs found

    Paleoenvironment and chemostratigraphy heterogenity of the Cretaceous organic-rich shales

    Get PDF
    The Cretaceous Qingshankou Formation in the Songliao Basin is rich in shale oil resources, which has become one of the most important exploration targets of lacustrine shale oil in China. Based on X-ray fluorescence element analysis, X-ray diffraction analysis, total organic carbon, rock pyrolysis, scanning electron microscope and nitrogen adsorption, the Paleoenvironment was reconstructed by comprehensive utilization of integrated prediction error filter analysis of chemical stratigraphy, and its relationship with organic geochemistry, mineralogy and pore structure was discussed. The results indicated that the Qingshankou Formation was deposited in the environment with fresh water-brackish water, semi-deep/deep water and strong reduction. The evolution of Paleoenvironment during the deposition of Qingshankou Formation changed from bottom to top, with increasing water depth, decreasing salinity and oxygen content. Paleosalinity was positively correlated with total organic carbon, residual hydrocarbon and carbonate mineral content. From bottom to top, the contents of carbonate and chlorite decreased, while the contents of plagioclase and clay minerals increased slightly. The pores were dominated by intra-illite pores, intra-I/S mixed-layer pores and intra-pyrite pores. Some intra-plagioclase pores and calcite dissolution pores were developed, and the organic matter pores are slightly few. Nitrogen adsorption data showed that the dominate pore size was 40-53 nm. This study clarifies the Paleoenvironmental evolution of the Qingshankou Formation, and may shed lights on lacustrine shale oil accumulation and sweet-spotting.Cited as: Guan, M., Wu, S., Hou, L., Jiang, X., Ba, D., Hua, G. Paleoenvironment and chemostratigraphy heterogenity of the Cretaceous organic-rich shales. Advances in Geo-Energy Research, 2021, 5(4): 444-455, doi: 10.46690/ager.2021.04.0

    Contrary to Common Observations in the West, Urban Park Access Is Only Weakly Related to Neighborhood Socioeconomic Conditions in Beijing, China

    No full text
    Parks provide critical ecosystem services to urban residents. Park access critically determines how parks are used by residents. Many existing studies, which mostly have been conducted in developed countries, reported that park access disproportionately benefits the socioeconomically advantaged groups. To test if this observation also holds true in developing countries, we examined the park access and its relationship with socioeconomic conditions in Beijing, China. We used a buffering method and a road network-based analysis to calculate the park access of 130 neighborhoods, and applied the Pearson correlation to examine how neighborhood park access is related to socioeconomic conditions. Our results showed that (1) the park access decreased from 76% in the downtown areas to 24% in the suburbs; (2) the correlation coefficients (r) between socioeconomic conditions and park access were all smaller than 0.3 (p < 0.05)—that is, explaining less than 8% of the variability. Our study indicated that neighborhood socioeconomic conditions were only weakly associated with park access in Beijing and did not support the common phenomenon in western countries. Such a contradiction might be explained by the fact that park planning in Beijing is funded and administered by the city government and influenced by the central government’s policy, whereas in most developed countries market sectors play a critical role in park planning. Our research suggested that urban planning funded by governments, when aimed at improving the wellbeing of all urban residents, may effectively reduce potential environmental inequalities

    Estimating fine-scale heat vulnerability in Beijing through two approaches: Spatial patterns, similarities, and divergence

    Get PDF
    High temperatures in urban areas cause a significant negative impact on the residents' health. In a megacity such as Beijing, where both the land cover and social composition of residents are highly spatially heterogeneous, understanding heat vulnerability at a relatively fine scale is a prerequisite for place-based heat intervention actions. Both principal component analysis (PCA) and equal-weighted index (EWI) are commonly used in heat vulnerability studies. However, the extent to which the choice of these approaches may impact the results remains unclear. Our study aimed to fill this gap by estimating heat vulnerability at the jiedao scale (the smallest census unit) in Beijing based on socioeconomic characteristics, heat exposure, and the use of air conditioners. Our results show that the choice of methods had a considerable impact on the spatial patterns of estimated heat vulnerability. PCA resulted in a ring-like pattern (high in the central and low in the suburb), whereas EWI revealed a north-south discrepancy (low in the north and high in the south). Such a difference is caused by the weighting scheme used in the PCA. Our findings indicate that heat vulnerability pattern revealed by a single measure needs to be interpreted with caution because different measures may produce disparate results

    The complete mitochondrial genome of Pethia padamya (Actinopteri, Cyprinidae)

    No full text
    Pethia padamya (Kullander and Britz, 2008) is a freshwater fish distributed in the Mekong River basin of Thailand. It has beautiful colors and can be used as an ornamental fish. The complete mitochondrial genome of P. padamya was determined using next-generation sequencing technology and its characteristics were analyzed. The mitochondrial genome is a closed circular molecule comprising 16,792 bp, including 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a major non-coding region. The overall base composition of the mitochondrial genome is 32.47% A, 25.39% C, 26.08% T, and 16.06% G, with a high A + T bias of 58.55%. Phylogenetic analysis revealed P. padamya as a sister group of Pethia conchonius+(Pethia ticto+Pethia cumingii) and Pethia gelius with maximal support, providing support for the monophyly of the genus Pethia based on concatenated nucleotide sequences. The results of this study proved the monophyly of the genus Pethia. These data for the first time provide information on the complete mitochondrial genome of P. padamya and can contribute to further studies on the biodiversity and management of P. padamya

    Laminar Structure and Reservoir Quality of Shales with High Clay Mineral Content in the Qingshankou Formation, Songliao Basin

    No full text
    This paper investigates high-maturity organic matter-rich shales with high clay mineral contents in the Qingshankou Formation, in the Gulong Depression of the Songliao Basin, at a sub-millimeter scale, using a new laminar division method based on XRF data. The influence of laminar structure on reservoir quality is examined using a combination of geochemistry, mineralogy, and pore structures. Explanatory models are established. Three types of laminar units are distinguished in the study area based on differences in pore structure. These are clay mineral laminae (UA), clay mineral-Ostracod laminae (UB), and clay mineral-felsic laminae (UC). UA has illite intergranular pores, micro-fractures, and organic pores, with diameters of 0.5~2 μm. UB primarily contains Ostracod shell margin fractures, pyrite intergranular pores, and chlorite intragranular pores. UC contains albite and illite intergranular pores. Nitrogen adsorption tests show that UA has the highest clay content and the best specific pore volume and specific surface area, indicating that clay minerals are the main contributors to the pores in this type of unit. 2D–3D models of different laminae reveal that carbonate cement is widely developed in UB and UC, but dissolution pores are less developed, with the result that the porosity of UA is two to three times greater than that of UB or UC. It appears that intergranular pores and fractures, formed during the transformation of clay minerals during the advanced thermal evolution stage, are the main contributors to storage space and flow channels. Thermal evolution, clay mineral transformation, and carbonate cementation are the key factors causing differences between laminar units. In addition, clay mineral laminae (UA) are the most important laminar units for shale oil enrichment in the study area. This finding is of great significance for accurately predicting the distribution of shale “sweet spots” and guiding shale oil and gas exploration

    Laminar Structure and Reservoir Quality of Shales with High Clay Mineral Content in the Qingshankou Formation, Songliao Basin

    No full text
    This paper investigates high-maturity organic matter-rich shales with high clay mineral contents in the Qingshankou Formation, in the Gulong Depression of the Songliao Basin, at a sub-millimeter scale, using a new laminar division method based on XRF data. The influence of laminar structure on reservoir quality is examined using a combination of geochemistry, mineralogy, and pore structures. Explanatory models are established. Three types of laminar units are distinguished in the study area based on differences in pore structure. These are clay mineral laminae (UA), clay mineral-Ostracod laminae (UB), and clay mineral-felsic laminae (UC). UA has illite intergranular pores, micro-fractures, and organic pores, with diameters of 0.5~2 μm. UB primarily contains Ostracod shell margin fractures, pyrite intergranular pores, and chlorite intragranular pores. UC contains albite and illite intergranular pores. Nitrogen adsorption tests show that UA has the highest clay content and the best specific pore volume and specific surface area, indicating that clay minerals are the main contributors to the pores in this type of unit. 2D–3D models of different laminae reveal that carbonate cement is widely developed in UB and UC, but dissolution pores are less developed, with the result that the porosity of UA is two to three times greater than that of UB or UC. It appears that intergranular pores and fractures, formed during the transformation of clay minerals during the advanced thermal evolution stage, are the main contributors to storage space and flow channels. Thermal evolution, clay mineral transformation, and carbonate cementation are the key factors causing differences between laminar units. In addition, clay mineral laminae (UA) are the most important laminar units for shale oil enrichment in the study area. This finding is of great significance for accurately predicting the distribution of shale “sweet spots” and guiding shale oil and gas exploration

    CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin

    No full text
    As an important part of carbon dioxide capture, utilization and storage (CCUS), the progress of injecting CO2 into oil reservoirs could increase the recovery rate and achieve large-scale carbon storage. It has become one of the most important carbon storage methods around the world. This paper selected the tight sandstone of the fourth member of the Quantou Formation in the southern Songliao Basin to carry out a CO2 storage physical simulation experiment. Representative samples were collected at 24 h, 72 h, 192 h and 432 h to study the CO2 water-rock interaction and to analyze the mineral composition, pore structure and the evolutionary characteristics of physical reservoir properties over time. Physical property analysis, Ion analysis, X-ray diffraction mineral analysis, QEMSCAN mineral analysis, scanning electron microscopy and high-resolution CT scanning techniques were adopted. The main points of understanding were: (i) It shows a differential evolution of different minerals following the storage time of CO2, and carbonate minerals are mainly dissolved with ankerite as a typical representation; a small amount of calcite is formed in 24 h, and dissolved in the later period; feldspar and quartz were partially dissolved; clay mineral precipitation blocked the pores and gaps; (ii) The evolution in mineral variation leads to the complexity of pore structure evolution, following a trend of “small pores decreasing and large pores increasing” with extending storage time. The final porosity and permeability ratios gradually increase from 4.07% to 21.31% and from 2.97% to 70.06% respectively; (iii) There is a negative correlation between the increasing ratio and the original physical properties of the tight stones due to the dissolution of ankerite. Relevant research could provide scientific guidance and technical support for the geological storage of CO2 in lacustrine tight continental sandstones and the development of CCUS technology
    corecore