11,325 research outputs found
Is the late near-infrared bump in short-hard GRB 130603B due to the Li-Paczynski kilonova?
Short-hard gamma-ray bursts (GRBs) are widely believed to be produced by the
merger of two binary compact objects, specifically by two neutron stars or by a
neutron star orbiting a black hole. According to the Li-Paczynski kilonova
model, the merger would launch sub-relativistic ejecta and a
near-infrared/optical transient would then occur, lasting up to days, which is
powered by the radioactive decay of heavy elements synthesized in the ejecta.
The detection of a late bump using the {\em Hubble Space Telescope} ({\em HST})
in the near-infrared afterglow light curve of the short-hard GRB 130603B is
indeed consistent with such a model. However, as shown in this Letter, the
limited {\em HST} near-infrared lightcurve behavior can also be interpreted as
the synchrotron radiation of the external shock driven by a wide mildly
relativistic outflow. In such a scenario, the radio emission is expected to
peak with a flux of Jy, which is detectable for current radio
arrays. Hence, the radio afterglow data can provide complementary evidence on
the nature of the bump in GRB 130603B. It is worth noting that good
spectroscopy during the bump phase in short-hard bursts can test validity of
either model above, analogous to spectroscopy of broad-lined Type Ic supernova
in long-soft GRBs.Comment: 4 pages, 2 figures, published in ApJ Lette
- …