181,516 research outputs found
Looking into DNA breathing dynamics via quantum physics
We study generic aspects of bubble dynamics in DNA under time dependent
perturbations, for example temperature change, by mapping the associated
Fokker-Planck equation to a quantum time-dependent Schroedinger equation with
imaginary time. In the static case we show that the eigenequation is exactly
the same as that of the -deformed nuclear liquid drop model, without the
issue of non-integer angular momentum. A universal breathing dynamics is
demonstrated by using an approximate method in quantum mechanics. The
calculated bubble autocorrelation function qualitatively agrees with
experimental data. Under time dependent modulations, utilizing the adiabatic
approximation, bubble properties reveal memory effects.Comment: 5 pages, 1 figur
Calculating the relative entropy of entanglement
We extend Vedral and Plenio's theorem (theorem 3 in Phys. Rev. A 57, 1619) to
a more general case, and obtain the relative entropy of entanglement for a
class of mixed states, this result can also follow from Rains' theorem 9 in
Phys. Rev. A 60, 179.Comment: 2 pages, RevTex, an important reference adde
Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect
The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating
Kinnersley black hole is investigated by using a method of the generalized
tortoise coordinate transformation. Both the location and temperature of the
event horizon depend on the time and on the angles. They coincide with previous
results, but the thermal radiation spectrum of massless spinor particles
displays a kind of spin-acceleration coupling effect.Comment: 8 pages, no figure, revtex 4.0, revisted version with typesetting
errors and misprint correcte
Nonlinear Dynamics of Particles Excited by an Electric Curtain
The use of the electric curtain (EC) has been proposed for manipulation and
control of particles in various applications. The EC studied in this paper is
called the 2-phase EC, which consists of a series of long parallel electrodes
embedded in a thin dielectric surface. The EC is driven by an oscillating
electric potential of a sinusoidal form where the phase difference of the
electric potential between neighboring electrodes is 180 degrees. We
investigate the one- and two-dimensional nonlinear dynamics of a particle in an
EC field. The form of the dimensionless equations of motion is codimension two,
where the dimensionless control parameters are the interaction amplitude ()
and damping coefficient (). Our focus on the one-dimensional EC is
primarily on a case of fixed and relatively small , which is
characteristic of typical experimental conditions. We study the nonlinear
behaviors of the one-dimensional EC through the analysis of bifurcations of
fixed points. We analyze these bifurcations by using Floquet theory to
determine the stability of the limit cycles associated with the fixed points in
the Poincar\'e sections. Some of the bifurcations lead to chaotic trajectories
where we then determine the strength of chaos in phase space by calculating the
largest Lyapunov exponent. In the study of the two-dimensional EC we
independently look at bifurcation diagrams of variations in with fixed
and variations in with fixed . Under certain values of
and , we find that no stable trajectories above the surface exists;
such chaotic trajectories are described by a chaotic attractor, for which the
the largest Lyapunov exponent is found. We show the well-known stable
oscillations between two electrodes come into existence for variations in
and the transitions between several distinct regimes of stable motion for
variations in
Recommended from our members
Bioinspired Multifunctional Anti-icing Hydrogel
The recent anti-icing strategies in the state of the art mainly focused on three aspects: inhibiting ice nucleation, preventing ice propagation, and decreasing ice adhesion strength. However, it is has proved difficult to prevent ice nucleation and propagation while decreasing adhesion simultaneously, due to their highly distinct, even contradictory design principles. In nature, anti-freeze proteins (AFPs) offer a prime example of multifunctional integrated anti-icing materials that excel in all three key aspects of the anti-icing process simultaneously by tuning the structures and dynamics of interfacial water. Here, inspired by biological AFPs, we successfully created a multifunctional anti-icing material based on polydimethylsiloxane-grafted polyelectrolyte hydrogel that can tackle all three aspects of the anti-icing process simultaneously. The simplicity, mechanical durability, and versatility of these smooth hydrogel surfaces make it a promising option for a wide range of anti-icing applications
The Current State of Normative Agent-Based Systems
Recent years have seen an increase in the application of ideas from the social sciences to computational systems. Nowhere has this been more pronounced than in the domain of multiagent systems. Because multiagent systems are composed of multiple individual agents interacting with each other many parallels can be drawn to human and animal societies. One of the main challenges currently faced in multiagent systems research is that of social control. In particular, how can open multiagent systems be configured and organized given their constantly changing structure? One leading solution is to employ the use of social norms. In human societies, social norms are essential to regulation, coordination, and cooperation. The current trend of thinking is that these same principles can be applied to agent societies, of which multiagent systems are one type. In this article, we provide an introduction to and present a holistic viewpoint of the state of normative computing (computational solutions that employ ideas based on social norms.) To accomplish this, we (1) introduce social norms and their application to agent-based systems; (2) identify and describe a normative process abstracted from the existing research; and (3) discuss future directions for research in normative multiagent computing. The intent of this paper is to introduce new researchers to the ideas that underlie normative computing and survey the existing state of the art, as well as provide direction for future research.Norms, Normative Agents, Agents, Agent-Based System, Agent-Based Simulation, Agent-Based Modeling
- …