7 research outputs found

    Expert Consensus on Microtransplant for Acute Myeloid Leukemia in Elderly Patients -Report From the International Microtransplant Interest Group

    Get PDF
    Recent studies have shown that microtransplant (MST) could improve outcome of patients with elderly acute myeloid leukemia (EAML). To further standardize the MST therapy and improve outcomes in EAML patients, based on analysis of the literature on MST, especially MST with EAML from January 1st, 2011 to November 30th, 2022, the International Microtransplant Interest Group provides recommendations and considerations for MST in the treatment of EAML. Four major issues related to MST for treating EAML were addressed: therapeutic principle of MST (1), candidates for MST (2), induction chemotherapy regimens (3), and post-remission therapy based on MST (4). Others included donor screening, infusion of donor cells, laboratory examinations, and complications of treatment

    LiDAR Road-Atlas: An Efficient Map Representation for General 3D Urban Environment

    Full text link
    In this work, we propose the LiDAR Road-Atlas, a compactable and efficient 3D map representation, for autonomous robot or vehicle navigation in general urban environment. The LiDAR Road-Atlas can be generated by an online mapping framework based on incrementally merging local 2D occupancy grid maps (2D-OGM). Specifically, the contributions of our LiDAR Road-Atlas representation are threefold. First, we solve the challenging problem of creating local 2D-OGM in non-structured urban scenes based on a real-time delimitation of traversable and curb regions in LiDAR point cloud. Second, we achieve accurate 3D mapping in multiple-layer urban road scenarios by a probabilistic fusion scheme. Third, we achieve very efficient 3D map representation of general environment thanks to the automatic local-OGM induced traversable-region labeling and a sparse probabilistic local point-cloud encoding. Given the LiDAR Road-Atlas, one can achieve accurate vehicle localization, path planning and some other tasks. Our map representation is insensitive to dynamic objects which can be filtered out in the resulting map based on a probabilistic fusion. Empirically, we compare our map representation with a couple of popular map representation methods in robotics and autonomous driving societies, and our map representation is more favorable in terms of efficiency, scalability and compactness. In addition, we also evaluate localization accuracy extensively given the created LiDAR Road-Atlas representations on several public benchmark datasets. With a 16-channel LiDAR sensor, our method achieves an average global localization errors of 0.26m (translation) and 1.07 degrees (rotation) on the Apollo dataset, and 0.89m (translation) and 1.29 degrees (rotation) on the MulRan dataset, respectively, at 10Hz, which validates the promising performance of our map representation for autonomous driving

    Frontier Detection and Reachability Analysis for Efficient 2D Graph-SLAM Based Active Exploration

    No full text
    © 2020 IEEE. We propose an integrated approach to active exploration by exploiting the Cartographer method as the base SLAM module for submap creation and performing efficient frontier detection in the geometrically co-aligned submaps induced by graph optimization. We also carry out analysis on the reachability of frontiers and their clusters to ensure that the detected frontier can be reached by robot. Our method is tested on a mobile robot in real indoor scene to demonstrate the effectiveness and efficiency of our approach
    corecore