1,208 research outputs found

    Mapping the Northern Galactic Disk Warp with Classical Cepheids

    Get PDF
    We present an updated three dimensional map of the Milky Way based on a sample of 2431 classical Cepheid variable stars, supplemented with about 200 newly detected classical Cepheids from the OGLE survey. The new objects were discovered as a result of a dedicated observing campaign of the ≈280 square degree extension of the OGLE footprint of the Galactic disk during 2018-2019 observing seasons. These regions cover the main part of the northern Galactic warp that has been deficient in Cepheids so far. We use direct distances to the sample of over 2390 classical Cepheids to model the distribution of the young stellar population in the Milky Way and recalculate the parameters of the Galactic disk warp. Our data show that its northern part is very prominent and its amplitude is ≈10% larger than that of the southern part. By combining Gaia astrometric data with the Galactic rotation curve and distances to Cepheids from our sample, we construct a map of the vertical component of the velocity vector for all Cepheids in the Milky Way disk. We find large-scale vertical motions with amplitudes of 10-20 km/s, such that Cepheids located in the northern warp exhibit large positive vertical velocity (toward the north Galactic pole), whereas those in the southern warp - negative vertical velocity (toward the south Galactic pole)

    Over 78 000 RR Lyrae Stars in the Galactic Bulge and Disk from the OGLE Survey

    Get PDF
    We present an upgrade of the OGLE Collection of RR Lyrae stars in the Galactic bulge and disk. The size of our sample has been doubled and reached 78 350 RR Lyr variables, of which 56 508 are fundamental-mode pulsators (RRab stars), 21 321 pulsate solely in the first-overtone (RRc stars), 458 are classical double-mode pulsators (RRd stars), and 63 are anomalous RRd variables (including six triple-mode pulsators). For all the newly identified RR Lyr stars, we publish time-series photometry obtained during the OGLE Galaxy Variability Survey. We present the spatial distribution of RR Lyr stars on the sky, provide a list of globular clusters hosting RR Lyr variables, and discuss the Petersen diagram for multimode pulsators. We find new RRd stars belonging to a compact group in the Petersen diagram (with period ratios P₁₀/P_F ≈ 0.74 and fundamental-mode periods P_F ≈ 0.44 d) and we show that their spatial distribution is roughly spherically symmetrical around the Milky Way center

    Over 78 000 RR Lyrae Stars in the Galactic Bulge and Disk from the OGLE Survey

    Get PDF
    We present an upgrade of the OGLE Collection of RR Lyrae stars in the Galactic bulge and disk. The size of our sample has been doubled and reached 78 350 RR Lyr variables, of which 56 508 are fundamental-mode pulsators (RRab stars), 21 321 pulsate solely in the first-overtone (RRc stars), 458 are classical double-mode pulsators (RRd stars), and 63 are anomalous RRd variables (including six triple-mode pulsators). For all the newly identified RR Lyr stars, we publish time-series photometry obtained during the OGLE Galaxy Variability Survey. We present the spatial distribution of RR Lyr stars on the sky, provide a list of globular clusters hosting RR Lyr variables, and discuss the Petersen diagram for multimode pulsators. We find new RRd stars belonging to a compact group in the Petersen diagram (with period ratios P₁₀/P_F ≈ 0.74 and fundamental-mode periods P_F ≈ 0.44 d) and we show that their spatial distribution is roughly spherically symmetrical around the Milky Way center

    Properties of the Milky Way's Old Populations Based on Photometric Metallicities of the OGLE RR Lyrae Stars

    Get PDF
    We have used photometric data on almost 91 000 fundamental-mode RR Lyr stars (type RRab) detected by the OGLE survey to investigate properties of old populations in the Milky Way. Based on their metallicity distributions, we demonstrate that the Galaxy is built from three distinct old components: halo, bulge, and disk. The distributions reach their maxima at approximately [Fe/H]_(J95) = -1.2 dex, -1.0 dex, and -0.6 dex on the Jurcsik's metallicity scale, respectively. We find that, very likely, the entire halo is formed from infalling dwarf galaxies. It is evident that halo stars penetrate the inner regions of the Galactic bulge. We estimate that about one-third of all RR Lyr stars within the bulge area belong in fact to the halo population. The whole old bulge is dominated by two populations, A and B, represented by a double sequence in the period--amplitude (Bailey) diagram. The boundary in iron abundance between the halo and the disk population is at about [Fe/H]_(J95) = -0.8 dex. Using Gaia DR2 for RRab stars in the disk area, we show that the observed dispersion of proper motions along the Galactic latitude decreases smoothly with the increasing metal content excluding a bump around [Fe/H]_(J95) = -1.0 dex
    corecore