50,488 research outputs found

    Fluidic hydrogen detector production prototype development

    Get PDF
    A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas

    Constraints on Dark Energy from Supernovae, Gamma Ray Bursts, Acoustic Oscillations, Nucleosynthesis and Large Scale Structure and the Hubble constant

    Get PDF
    The luminosity distance vs. redshift law is now measured using supernovae and gamma ray bursts, and the angular size distance is measured at the surface of last scattering by the CMB and at z = 0.35 by baryon acoustic oscillations. In this paper this data is fit to models for the equation of state with w = -1, w = const, and w(z) = w_0+w_a(1-a). The last model is poorly constrained by the distance data, leading to unphysical solutions where the dark energy dominates at early times unless the large scale structure and acoustic scale constraints are modified to allow for early time dark energy effects. A flat LambdaCDM model is consistent with all the data.Comment: 19 pages Latex with 8 Postscript figure files. A new reference and constraint, w vs w' contour plots updated. Version accepted by the the Ap

    Attraction of Acorn-Infesting \u3ci\u3eCydia Latiferreana\u3c/i\u3e (Lepidoptera: Tortricidae) to Pheromone-Baited Traps

    Get PDF
    Males of acorn-infesting Cydia latiferreana are attracted to an equilibrium mixture of the four isomers of 8, 10-dodecadien-l-ol acetate, the virgin female-produced pheromone. Trap height relative to the height of trees in which traps are placed seems to be a significant factor influencing moth catches at attractant-baited traps. In an oak woodlot and in an oak nursery, catches of male moths were greater in traps placed near the upper periphery of the canopy than at traps deployed at lower levels in the tree. Practical application of pheromone-baited traps in a forest situation will require further study on lure formulation and on trap deployment under forest conditions

    The limits of shelf water south of Cape Cod, 1941 to 1972

    Get PDF
    Some 19,000 batbythermograms and 1,600 oceanographic stations in the region 39° to 41°N, 69° to 72° W have been examined for evidence of changes in the character and position of the shelf water/slope water boundary. Results show a) the boundary, identified by the 10° isotherm, intersects the bottom within 16 km of the 100-m curve about 80 percent of the time, with a seasonal progression from the south in the winter to north in the foll;..

    Refined Properties of the HD 130322 Planetary System

    Get PDF
    Exoplanetary systems closest to the Sun, with the brightest host stars, provide the most favorable opportunities for characterization studies of the host star and their planet(s). The Transit Ephemeris Refinement and Monitoring Survey uses both new radial velocity measurements and photometry in order to greatly improve planetary orbit uncertainties and the fundamental properties of the star, in this case HD 130322. The only companion, HD 130322b, orbits in a relatively circular orbit, e = 0.029 every ~10.7 days. Radial velocity measurements from multiple sources, including 12 unpublished from the Keck I telescope, over the course of ~14 years have reduced the uncertainty in the transit midpoint to ~2 hours. The transit probability for the b-companion is 4.7%, where M_p sin i = 1.15 M_J and a = 0.0925 AU. In this paper, we compile photometric data from the T11 0.8m Automated Photoelectric Telescope at Fairborn Observatory taken over ~14 years, including the constrained transit window, which results in a dispositive null result for both full transit exclusion of HD 130322b to a depth of 0.017 mag and grazing transit exclusion to a depth of ~0.001 mag. Our analysis of the starspot activity via the photometric data reveals a highly accurate stellar rotation period: 26.53 +/-0.70 days. In addition, the brightness of the host with respect to the comparison stars is anti-correlated with the Ca II H and K indices, typical for a young solar-type star.Comment: 9 pages, 4 figures, 4 tables, accepted to Ap

    The Panther Mountain circular structure, a possible buried meteorite crater

    Get PDF
    Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon

    Revised Orbit and Transit Exclusion for HD 114762b

    Get PDF
    Transiting planets around bright stars have allowed the detailed follow-up and characterization of exoplanets, such as the study of exoplanetary atmospheres. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is refining the orbits of the known exoplanets to confirm or rule out both transit signatures and the presence of additional companions. Here we present results for the companion orbiting HD 114762 in an eccentric 84 day orbit. Radial velocity analysis performed on 19 years of Lick Observatory data constrain the uncertainty in the predicted time of mid-transit to ~5 hours, which is less than the predicted one-half day transit duration. We find no evidence of additional companions in this system. New photometric observations with one of our Automated Photoelectric Telescopes (APTs) at Fairborn Observatory taken during a revised transit time for companion b, along with 23 years of nightly automated observations, allow us to rule out on-time central transits to a limit of ~0.001 mag. Early or late central transits are ruled out to a limit of ~0.002 mag, and transits with half the duration of a central transit are ruled out to a limit of ~0.003 mag.Comment: 5 pages, 2 figures, accepted for publication in ApJ

    Is pulsar B0656+14 a very nearby RRAT source?

    Get PDF
    The recently discovered RRAT sources are characterized by very bright radio bursts which, while being periodically related, occur infrequently. We find bursts with the same characteristics for the known pulsar B0656+14. These bursts represent pulses from the bright end of an extended smooth pulse-energy distribution and are shown to be unlike giant pulses, giant micropulses or the pulses of normal pulsars. The extreme peak-fluxes of the brightest of these pulses indicates that PSR B0656+14, were it not so near, could only have been discovered as an RRAT source. Longer observations of the RRATs may reveal that they, like PSR B0656+14, emit weaker emission in addition to the bursts.Comment: 4 pages, 4 figures, accepted by ApJ
    corecore