407 research outputs found
In vivo impact of a 4Â bp deletion mutation in the DLX3 gene on bone development
AbstractDistal-less 3 (DLX3) gene mutations are etiologic for Tricho-Dento-Osseous syndrome. To investigate the in vivo impact of mutant DLX3 on bone development, we established transgenic (TG) mice expressing the c.571_574delGGGG DLX-3 gene mutation (MT-DLX3) driven by a mouse 2.3 Col1A1 promoter. Microcomputed tomographic analyses demonstrated markedly increased trabecular bone volume and bone mineral density in femora from TG mice. In ex vivo experiments, TG mice showed enhanced differentiation of bone marrow stromal cells to osteoblasts and increased expression levels of bone formation markers. However, TG mice did not show enhanced dynamic bone formation rates in in vivo fluorochrome double labeling experiments. Osteoclastic differentiation capacities of bone marrow monocytes were reduced in TG mice in the presence of osteoclastogenic factors and the numbers of TRAP(+) osteoclasts on distal metaphyseal trabecular bone surfaces were significantly decreased. TRACP 5b and CTX serum levels were significantly decreased in TG mice, while IFN-Îł levels were significantly increased. These data demonstrate that increased levels of IFN-Îł decrease osteoclast bone resorption activities, contributing to the enhanced trabecular bone volume and mineral density in these TG mice. These data suggest a novel role for this DLX-3 mutation in osteoclast differentiation and bone resorption
A Bayesian Approach to Calibrating Period-Luminosity Relations of RR Lyrae Stars in the Mid-Infrared
A Bayesian approach to calibrating period-luminosity (PL) relations has
substantial benefits over generic least-squares fits. In particular, the
Bayesian approach takes into account the full prior distribution of the model
parameters, such as the a priori distances, and refits these parameters as part
of the process of settling on the most highly-constrained final fit.
Additionally, the Bayesian approach can naturally ingest data from multiple
wavebands and simultaneously fit the parameters of PL relations for each
waveband in a procedure that constrains the parameter posterior distributions
so as to minimize the scatter of the final fits appropriately in all wavebands.
Here we describe the generalized approach to Bayesian model fitting and then
specialize to a detailed description of applying Bayesian linear model fitting
to the mid-infrared PL relations of RR Lyrae variable stars. For this example
application we quantify the improvement afforded by using a Bayesian model fit.
We also compare distances previously predicted in our example application to
recently published parallax distances measured with the Hubble Space Telescope
and find their agreement to be a vindication of our methodology. Our intent
with this article is to spread awareness of the benefits and applicability of
this Bayesian approach and encourage future PL relation investigations to
consider employing this powerful analysis method.Comment: 6 pages, 1 figure. Accepted for publication in Astrophysics & Space
Science. Following a presentation at the conference The Fundamental Cosmic
Distance Scale: State of the Art and the Gaia Perspective, Naples, May 201
Do we know the mass of a black hole? Mass of some cosmological black hole models
Using a cosmological black hole model proposed recently, we have calculated
the quasi-local mass of a collapsing structure within a cosmological setting
due to different definitions put forward in the last decades to see how similar
or different they are. It has been shown that the mass within the horizon
follows the familiar Brown-York behavior. It increases, however, outside the
horizon again after a short decrease, in contrast to the Schwarzschild case.
Further away, near the void, outside the collapsed region, and where the
density reaches the background minimum, all the mass definitions roughly
coincide. They differ, however, substantially far from it. Generically, we are
faced with three different Brown-York mass maxima: near the horizon, around the
void between the overdensity region and the background, and another at
cosmological distances corresponding to the cosmological horizon. While the
latter two maxima are always present, the horizon mass maxima is absent before
the onset of the central singularity.Comment: 11 pages, 8 figures, revised version, accepted in General Relativity
and Gravitatio
Kernel density classification and boosting: an L2 sub analysis
Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results for kernel methods apply to estimation per se and not necessarily to classification. In this paper we show that when estimating the difference between two densities, the optimal smoothing parameters are increasing functions of the sample size of the complementary group, and we provide a small simluation study which examines the relative performance of kernel density methods when the final goal is classification. A relative newcomer to the classification portfolio is âboostingâ, and this paper proposes an algorithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously proposed method of bias reduction in kernel density estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces the bias whilst only slightly increasing the variance, with an overall reduction in error. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research
Alternative soot detection strategies for application in aero-engine test-beds : assessment of the performance and uncertainties of time-integrated LII
We describe a laser induced incandescence (LII) measurement system for 2D mapping of non-volatile particulate matter (soot) in full-scale aero-engine exhausts. Simulation allows us to quantify the sensitivity of the measurement to variation in physical properties such as primary particle size, over a range of laser fluences and as a function of beam diameter. We discuss the implications of our results for optimisation and calibration of soot imaging in exhaust streams
Dapagliflozin: a sodium glucose cotransporter 2 inhibitor in development for type 2 diabetes
Type 2 diabetes mellitus (T2DM) is a growing worldwide epidemic. Patients face lifelong therapy to control hyperglycemia and prevent the associated complications. There are many medications, with varying mechanisms, available for the treatment of T2DM, but almost all target the declining insulin sensitivity and secretion that are associated with disease progression. Medications with such insulin-dependent mechanisms of action often lose efficacy over time, and there is increasing interest in the development of new antidiabetes medications that are not dependent upon insulin. One such approach is through the inhibition of renal glucose reuptake. Dapagliflozin, the first of a class of selective sodium glucose cotransporter 2 inhibitors, reduces renal glucose reabsorption and is currently under development for the treatment of T2DM. Here, we review the literature relating to the preclinical and clinical development of dapagliflozin
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Biodistribution of 64 Cu in Inflamed Rats Following Administration of Two Anti-Inflammatory Copper Complexes
64Cu was administered in two anti-inflammatory formulations to normal rats and to rats with 2 forms of local inflammation, namely (a) an acute paw oedema (elicited with carrageenan) or (b) a chronic granulomatous response to an implanted irritant (Mycobacterium tuberculosis in a polyurethane sponge). The copper formulations used were (i) a slow release one consisting of Cu(II) salicylate applied dermally with ethanol/DMSO and (ii) short acting hydrophilic complex (Cu(I)Cu(II)-penicillamine)5- given subcutaneously. Three types of changes in copper biodistribution with these forms of inflammation were discerned based on determination of 64Cu and copper content in the following organs: inflammatory locus (foot or sponge implant), kidney, liver, spleen, adrenals, brain, blood, thymus, heart, and skin (site of application). The most evident changes were in the kidneys, liver, spleen, adrenals, thymus and serum from animals with chronic granulomatous inflammation. In contrast, a short term acute inflammatory stress (carrageenan paw oedema) had little effect. While copper D-penicillamine (applied subcutaneously) appeared to move as a bolus through the animals, the results with the percutaneous copper salicylate formulation are consistent with it providing a slow release source of copper(II). Exogenous 64Cu from both formulations was sequestered at inflammatory sites (relative to serum). This may partly explain how applied copper complexes can be anti-inflammatory
Hypersurface-Invariant Approach to Cosmological Perturbations
Using Hamilton-Jacobi theory, we develop a formalism for solving
semi-classical cosmological perturbations which does not require an explicit
choice of time-hypersurface. The Hamilton-Jacobi equation for gravity
interacting with matter (either a scalar or dust field) is solved by making an
Ansatz which includes all terms quadratic in the spatial curvature.
Gravitational radiation and scalar perturbations are treated on an equal
footing. Our technique encompasses linear perturbation theory and it also
describes some mild nonlinear effects. As a concrete example of the method, we
compute the galaxy-galaxy correlation function as well as large-angle microwave
background fluctuations for power-law inflation, and we compare with recent
observations.Comment: 51 pages, Latex 2.09 ALBERTA THY/20-94, DAMTP R94/25 To appear in
Phys. Rev.
- âŚ