8 research outputs found
Participatory development of MIDY (Mobile Intervention for Drinking in Young people)
Abstract Background There are few effective strategies that respond to the widespread practice of risky single-occasion drinking in young people. Brief interventions, which involve screening of alcohol consumption and personalised feedback, have shown some efficacy in reducing alcohol consumption, but are typically delivered in clinical settings. Mobile phones can be used to reach large populations instantaneously, both for data collection and intervention, but this has not been studied in combination during risky drinking events Methods Our study investigated the feasibility and acceptability of a mobile-phone delivered Ecological Momentary Assessment (EMA) and brief intervention for young people during drinking events. Our participatory design involved development workshops, intervention testing and evaluation with 40 young people in Melbourne, Australia. The final intervention included text message prompts to fill in mobile-based questionnaires, which measured drinks consumed, spending, location and mood, with additional questions in the initial and final questionnaire relating to plans, priorities, and adverse events. Participants received a tailored feedback SMS related to their drinking after each hourly questionnaire. The intervention was tested on a single drinking occasion. Prompts were sent between 6 pm and 2 am during a drinking event, with one follow up at 12 pm the following day. Results Participants reported being comfortable with hourly mobile data collection and intervention during social occasions, and found the level of intrusion acceptable; we achieved an 89 % response rate on the single occasion of testing. Participants were proactive in suggesting additional questions that would assist in the tailoring of feedback content, despite the added time burden. While we did not test the effectiveness of the intervention, participants reported value in the tracking and feedback process, with many stating that they would normally not be aware of how much alcohol they consumed in a night. Conclusions Findings suggest that the intervention was considered acceptable, feasible and novel to our participants; it now requires comprehensive testing and evaluation
A saturated map of common genetic variants associated with human height
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries
At-admission prediction of mortality and pulmonary embolism in an international cohort of hospitalised patients with COVID-19 using statistical and machine learning methods
By September 2022, more than 600 million cases of SARS-CoV-2 infection have been reported globally, resulting in over 6.5 million deaths. COVID-19 mortality risk estimators are often, however, developed with small unrepresentative samples and with methodological limitations. It is highly important to develop predictive tools for pulmonary embolism (PE) in COVID-19 patients as one of the most severe preventable complications of COVID-19. Early recognition can help provide life-saving targeted anti-coagulation therapy right at admission. Using a dataset of more than 800,000 COVID-19 patients from an international cohort, we propose a cost-sensitive gradient-boosted machine learning model that predicts occurrence of PE and death at admission. Logistic regression, Cox proportional hazards models, and Shapley values were used to identify key predictors for PE and death. Our prediction model had a test AUROC of 75.9% and 74.2%, and sensitivities of 67.5% and 72.7% for PE and all-cause mortality respectively on a highly diverse and held-out test set. The PE prediction model was also evaluated on patients in UK and Spain separately with test results of 74.5% AUROC, 63.5% sensitivity and 78.9% AUROC, 95.7% sensitivity. Age, sex, region of admission, comorbidities (chronic cardiac and pulmonary disease, dementia, diabetes, hypertension, cancer, obesity, smoking), and symptoms (any, confusion, chest pain, fatigue, headache, fever, muscle or joint pain, shortness of breath) were the most important clinical predictors at admission. Age, overall presence of symptoms, shortness of breath, and hypertension were found to be key predictors for PE using our extreme gradient boosted model. This analysis based on the, until now, largest global dataset for this set of problems can inform hospital prioritisation policy and guide long term clinical research and decision-making for COVID-19 patients globally. Our machine learning model developed from an international cohort can serve to better regulate hospital risk prioritisation of at-risk patients. © The Author(s) 2024