6,216 research outputs found

    Photovoltaic Performance of FAPbI3 Perovskite Is Hampered by Intrinsic Quantum Confinement

    Get PDF
    Formamidinium lead trioiodide (FAPbI3) is a promising perovskite for single-junction solar cells. However, FAPbI3 is metastable at room temperature and can cause intrinsic quantum confinement effects apparent through a series of above-bandgap absorption peaks. Here, we explore three common solution-based film-fabrication methods, neat N,N-dimethylformamide (DMF)–dimethyl sulfoxide (DMSO) solvent, DMF-DMSO with methylammonium chloride, and a sequential deposition approach. The latter two offer enhanced nucleation and crystallization control and suppress such quantum confinement effects. We show that elimination of these absorption features yields increased power conversion efficiencies (PCEs) and short-circuit currents, suggesting that quantum confinement hinders charge extraction. A meta-analysis of literature reports, covering 244 articles and 825 photovoltaic devices incorporating FAPbI3 films corroborates our findings, indicating that PCEs rarely exceed a 20% threshold when such absorption features are present. Accordingly, ensuring the absence of these absorption features should be the first assessment when designing fabrication approaches for high-efficiency FAPbI3 solar cells

    The opposite of Dante's hell? The transfer of ideas for social housing at international congresses in the 1850s–1860s

    Get PDF
    With the advent of industrialization, the question of developing adequate housing for the emergent working classes became more pressing than before. Moreover, the problem of unhygienic houses in industrial cities did not stop at the borders of a particular nation-state; sometimes literally as pandemic diseases spread out 'transnationally'. It is not a coincidence that in the nineteenth century the number of international congresses on hygiene and social topics expanded substantially. However, the historiography about social policy in general and social housing in particular, has often focused on individual cases because of the different pace of industrial and urban development and is thus dominated by national perspectives. In this paper, I elaborate on transnational exchange processes and local adaptations and transformations. I focus on the transfer of the housing model of SOMCO in Mulhouse, (a French house building association) during social international congresses. I examine whether cross-national networking enabled and facilitated the implementation of ideas on the local scale. I will elaborate on the transmission and the local adaptation of the Mulhouse-model in Belgium. Convergences, divergences, and different factors that influenced the local transformations (personal choice, political situation, socioeconomic circumstances) will be taken into accoun

    The Discovery of Y Dwarfs Using Data from the Wide-field Infrared Survey Explorer (WISE)

    Get PDF
    We present the discovery of seven ultracool brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Near-infrared spectroscopy reveals deep absorption bands of H_2O and CH_4 that indicate all seven of the brown dwarfs have spectral types later than UGPS J072227.51-054031.2, the latest type T dwarf currently known. The spectrum of WISEP J182831.08+265037.8 is distinct in that the heights of the J- and H-band peaks are approximately equal in units of f_lambda, so we identify it as the archetypal member of the Y spectral class. The spectra of at least two of the other brown dwarfs exhibit absorption on the blue wing of the H-band peak that we tentatively ascribe to NH_3. These spectral morphological changes provide a clear transition between the T dwarfs and the Y dwarfs. In order to produce a smooth near-infrared spectral sequence across the T/Y dwarf transition, we have reclassified UGPS J0722-0540 as the T9 spectral standard and tentatively assign WISEP J173835.52+273258.9 as the Y0 spectral standard. In total, six of the seven new brown dwarfs are classified as Y dwarfs: four are classified as Y0, one is classified as Y0 (pec?), and WISEP J1828+2650 is classified as >Y0. We have also compared the spectra to the model atmospheres of Marley and Saumon and infer that the brown dwarfs have effective temperatures ranging from 300 K to 500 K, making them the coldest spectroscopically confirmed brown dwarfs known to date.Comment: Submitted June 11 and accepted August 2 for publication in the Astrophysical Journa

    Field-deployable, quantitative, rapid identification of active Ebola virus infection in unprocessed blood

    Get PDF
    The West African Ebola virus outbreak underlined the importance of delivering mass diagnostic capability outside the clinical or primary care setting in effectively containing public health emergencies caused by infectious disease. Yet, to date, there is no solution for reliably deploying at the point of need the gold standard diagnostic method, real time quantitative reverse transcription polymerase chain reaction (RT- qPCR), in a laboratory infrastructure-free manner. In this proof of principle work, we demonstrate direct performance of RT-qPCR on fresh blood using far-red fluorophores to resolve fluorogenic signal inhibition and controlled, rapid freeze/thawing to achieve viral genome extraction in a single reaction chamber assay. The resulting process is entirely free of manual or automated sample pre-processing, requires no microfluidics or magnetic/mechanical sample handling and thus utilizes low cost consumables. This enables a fast, laboratory infrastructure-free, minimal risk and simple standard operating procedure suited to frontline, field use. Developing this novel approach on recombinant bacteriophage and recombinant human immunodeficiency virus (HIV; Lentivirus), we demonstrate clinical utility in symptomatic EBOV patient screening using live, infectious Filoviruses and surrogate patient samples. Moreover, we evidence assay co-linearity independent of viral particle structure that may enable viral load quantification through pre-calibration, with no loss of specificity across an 8 log- linear maximum dynamic range. The resulting quantitative rapid identification (QuRapID) molecular diagnostic platform, openly accessible for assay development, meets the requirements of resource- limited countries and provides a fast response solution for mass public health screening against emerging biosecurity threats

    The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes

    Get PDF
    The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events

    Dataset of characteristic remanent magnetization and magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform)

    Get PDF
    This data article describes data of magnetic stratigraphy and anisotropy of isothermal remanent magnetization (AIRM) from "Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system" [1]. Acquisition of isothermal magnetization on pilot samples and anisotropy of isothermal remanent magnetization are reported as raw data; magnetostratigraphic data are reported as characteristic magnetization (ChRM).info:eu-repo/semantics/publishedVersio

    Extending the Nearby Galaxy Heritage with WISE: First Results from the WISE Enhanced Resolution Galaxy Atlas

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at mid-infrared wavelengths 3.4 μm, 4.6 μm, 12 μm, and 22 μm. The mission was primarily designed to extract point sources, leaving resolved and extended sources, for the most part, unexplored. Accordingly, we have begun a dedicated WISE Enhanced Resolution Galaxy Atlas (WERGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we demonstrate the first results of the WERGA project for a sample of 17 galaxies, chosen to be of large angular size, diverse morphology, and covering a range in color, stellar mass, and star formation. It includes many well-studied galaxies, such as M 51, M 81, M 87, M 83, M 101, and IC 342. Photometry and surface brightness decomposition is carried out after special super-resolution processing, achieving spatial resolutions similar to that of Spitzer Infrared Array Camera. The enhanced resolution method is summarized in the first paper of this two-part series. In this second work, we present WISE, Spitzer, and Galaxy Evolution Explorer (GALEX) photometric and characterization measurements for the sample galaxies, combining the measurements to study the global properties. We derive star formation rates using the polycyclic aromatic hydrocarbon sensitive 12 μm (W3) fluxes, warm-dust sensitive 22 μm (W4) fluxes, and young massive-star sensitive ultraviolet (UV) fluxes. Stellar masses are estimated using the 3.4 μm (W1) and 4.6 μm (W2) measurements that trace the dominant stellar mass content. We highlight and showcase the detailed results of M 83, comparing the WISE/Spitzer results with the Australia Telescope Compact Array H I gas distribution and GALEX UV emission, tracing the evolution from gas to stars. In addition to the enhanced images, WISE's all-sky coverage provides a tremendous advantage over Spitzer for building a complete nearby galaxy catalog, tracing both stellar mass and star formation histories. We discuss the construction of a complete mid-infrared catalog of galaxies and its complementary role of studying the assembly and evolution of galaxies in the local universe

    Y Dwarf Trigonometric Parallaxes from the Spitzer Space Telescope

    Get PDF
    Y dwarfs provide a unique opportunity to study free-floating objects with masses <30 M_(Jup) and atmospheric temperatures approaching those of known Jupiter-like exoplanets. Obtaining distances to these objects is an essential step toward characterizing their absolute physical properties. Using Spitzer's Infrared Array Camera (IRAC) [4.5] images taken over baselines of ~2–7 years, we measure astrometric distances for 22 late-T and early Y dwarfs, including updated parallaxes for 18 objects and new parallax measurements for 4 objects. These parallaxes will make it possible to explore the physical parameter space occupied by the coldest brown dwarfs. We also present the discovery of six new late-T dwarfs, updated spectra of two T dwarfs, and the reclassification of a new Y dwarf, WISE J033605.04−014351.0, based on Keck/NIRSPEC J-band spectroscopy. Assuming that effective temperatures are inversely proportional to absolute magnitude, we examine trends in the evolution of the spectral energy distributions of brown dwarfs with decreasing effective temperature. Surprisingly, the Y dwarf class encompasses a large range in absolute magnitude in the near- to mid-infrared photometric bandpasses, demonstrating a larger range of effective temperatures than previously assumed. This sample will be ideal for obtaining mid-infrared spectra with the James Webb Space Telescope because their known distances will make it easier to measure absolute physical properties
    corecore