299 research outputs found
NUISANCE: a neutrino cross-section generator tuning and comparison framework
NUISANCE is an open source C++ framework which facilitates detailed studies of neutrino interaction cross-section models implemented in Monte Carlo neutrino event generators. It provides a host of automated methods to perform comparisons of multiple generators to published cross-section measurements and each other. External reweighting libraries are used to allow the end-user to evaluate the impact of model parameters variations in the generators with data, or to tune the generator predictions to arbitrary dataset combinations. The design is modular and focusses on ease-of-use to allow new datasets and more generators to be added without requiring detailed understanding of the entire NUISANCE package. We discuss the motivation for the NUISANCE framework and suggested usage cases, alongside a description of its core structure
Electron-nucleus scattering in the NEUT event generator
The NEUT event generator is a widely-used tool to simulate neutrino
interactions for energies between 10s of MeV and a few TeV. NEUT plays a
crucial role in neutrino oscillation analyses for the T2K and Hyper-K
experiments, providing the primary simulation of the neutrino interactions
whose final-state products are measured to infer the oscillation parameters.
NEUT is also capable of simulating nucleon decay and hadron scattering. These
proceedings present an expansion of NEUT to simulate electron scattering before
showing comparisons to experimental measurements and using discrepancies to
derive an empirical correction to NEUT's treatment of nuclear removal energy.Comment: 5 pages, 3 figures. NuFact2022 proceedings submissio
Summary of Workshop on Common Neutrino Event Generator Tools
A neutrino community workshop was held at Fermilab in Jan 2020, with the aim of developing an implementation plan for a set of common interfaces to Neutrino Event Generators. This white paper summarizes discussions at the workshop and the resulting plan
Summary of the NuSTEC Workshop on Neutrino-Nucleus Pion Production in the Resonance Region
The NuSTEC workshop held at the University of Pittsburgh in October 2019 brought theorists and experimentalists together to discuss the state of modeling and measurements related to pion production in neutrino-nucleus scattering in the kinematic region where pions are produced through both resonant and non-resonant mechanisms. Modeling of this region is of critical importance to the current and future accelerator- and atmospheric-based neutrino oscillation experiments. For the benefit of the community, links to the presentations are accompanied by annotations from the speakers highlighting significant points made during the presentations and resulting discussions
Comparisons and challenges of modern neutrino scattering experiments (TENSIONS2016 report)
Over the last decade, there has been enormous effort to measure neutrino interaction cross sections important to oscillation experiments. However, a number of results from modern experiments appear to be in tension with each other, despite purporting to measure the same processes. The TENSIONS2016 workshop was held at University of Pittsburgh July 24â31, 2016 and was sponsored by the Pittsburgh Particle Physics, Astronomy, and Cosmology Center (PITT PACC). The focus was on bringing experts from three experimental collaborations together to compare results in detail and try to find the source of tension by clarifying and comparing signal definitions and the analysis strategies used for each measurement. A set of comparisons between the measurements using a consistent set of models was also made. This paper summarizes the main conclusions of that work
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
- âŠ