195 research outputs found
Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-Γ -brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. Β© 2013 Rogers et al
A pragmatic, open-label, randomized controlled trial of Plasma-Lyte-148 versus standard intravenous fluids in children receiving kidney transplants (PLUTO)
Acute electrolyte and acid-base imbalance is experienced by many children following kidney transplant. This is partly because doctors give very large volumes of artificial fluids to keep the new kidney working. When severe, fluid imbalance can lead to seizures, cerebral edema and death. In this pragmatic, open-label, randomized controlled trial, we randomly assigned (1:1) pediatric kidney transplant recipients to Plasma-Lyte-148 or standard of care perioperative intravenous fluids (predominantly 0.45% sodium chloride and 0.9% sodium chloride solutions). We then compared clinically significant electrolyte and acid-base abnormalities in the first 72 hours post-transplant. The primary outcome, acute hyponatremia, was experienced by 53% of 68 participants in the Plasma-Lyte-148 group and 58% of 69 participants in the standard fluids group (odds ratio 0Β·77 (0Β·34 - 1Β·75)). Five of 16 secondary outcomes differed with Plasma-Lyte-148: hypernatremia was significantly more frequent (odds ratio 3Β·5 (1Β·1 - 10Β·8)), significantly fewer changes to fluid prescriptions were made (rate ratio 0Β·52 (0Β·40-0Β·67)), and significantly fewer participants experienced hyperchloremia (odds ratio 0Β·17 (0Β·07 - 0Β·40)), acidosis (odds ratio 0Β·09 (0Β·04 - 0Β·22)) and hypomagnesemia (odds ratio 0Β·21 (0Β·08 - 0Β·50)). No other secondary outcomes differed between groups. Serious adverse events were reported in 9% of participants randomized to Plasma-Lyte-148 and 7% of participants randomized to standard fluids. Thus, perioperative Plasma-Lyte-148 did not change the proportion of children who experienced acute hyponatremia compared to standard fluids. However fewer fluid prescription changes were made with Plasma-Lyte-148, while hyperchloremia and acidosis were less common
Biology and Impacts of Pacific Island Invasive Species: 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)
The greenhouse frog, Eleutherodactylus planirostris, is a direct-developing (i.e., no aquatic stage) frog native to Cuba and the Bahamas. It was introduced to Hawaii via nursery plants in the early 1990s and then subsequently from Hawaii to Guam in 2003. The greenhouse frog is now widespread on five Hawaiian Islands and Guam. Infestations are often overlooked due to the frogβs quiet calls, small size, and cryptic behavior, and this likely contributes to its spread. Because the greenhouse frog is an insectivore, introductions may reduce invertebrates. In Hawaii, the greenhouse frog primarily consumes ants, mites, and springtails, and obtains densities of up to 12,500 frogs ha-1. At this density, it is estimated that they can consume up to 129,000 invertebrates ha-1 night-1. They are a food source for the non-native brown tree snake in Guam and may be a food source for other non-native species. They may also compete with other insectivores for available prey. The greatest direct economic impacts of the invasions are to the nursery trade that must treat infested shipments. Although various control methods have been developed to control frogs in Hawaii, and citric acid, in particular, is effective in reducing greenhouse frogs, the frogβs inconspicuous nature often prevents populations from being identified and managed
Global Financial Crisis: A Minskyan Interpretation of the Causes, the Fedβs Bailout, and the Future
This paper provides a quick review of the causes of the Global Financial Crisis that began in 2007. There were many contributing factors, but among the most important were rising inequality and stagnant incomes for most American workers, growing private sector debt in the United States and many other countries, financialization of the global economy (itself a very complex process), deregulation and desupervision of financial institutions, and overly tight fiscal policy in many nations. The analysis adopts the stages approach developed by Hyman P. Minsky, according to which a gradual transformation of the economy over the postwar period has in many ways reproduced the conditions that led to the Great Depression. The paper then moves on to an examination of the US government's bailout of the global financial system. While other governments played a role, the US Treasury and the Federal Reserve assumed much of the responsibility for the bailout. A detailed examination of the Fed's response shows how unprecedented - and possibly illegal - was its extension of the government's safety net to the biggest financial institutions. The paper closes with an assessment of the problems the bailout itself poses for the future
Modeling the Evolution of Regulatory Elements by Simultaneous Detection and Alignment with Phylogenetic Pair HMMs
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation
The Intersectionality of Disastersβ Effects on Trust in Public Officials
Objective
Groups defined by race and ideology are wellβknown predictors of interpersonal and political trust, but genderβbased effects are undecided. I investigate whether disaster experience conditions a difference in political trust between women and men.
Methods
Examining the hurricane data set of U.S. public opinion, I analyze intersectionality's influence on disasterβbased political trust with a threeβway interaction between race, class, and gender.
Results
Among disaster survivors, black women trust less than all other raceβgender groups, and white men trust the most. The difference between black and white women survivorsβ political trust is attenuated by education. Education exacerbates raceβbased political trust among observers. Among observers, there is not a genderβbased distinction.
Conclusion
Disasters create new identities based on shared experience, and offer a moment in time that illustrates how trust varies along genderβraceβclassβdisaster dimensions. Knowing how trust differs according to intersectionality allows managers to manage critical events better
The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Bacillus subtilis Biofilm Formation
Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme
Complex Interplay of Evolutionary Forces in the ladybird Homeobox Genes of Drosophila melanogaster
Tandemly arranged paralogous genes lbe and lbl are members of the Drosophila NK homeobox family. We analyzed population samples of Drosophila melanogaster from Africa, Europe, North and South America, and single strains of D. sechellia, D. simulans, and D. yakuba within two linked regions encompassing partial sequences of lbe and lbl. The evolution of lbe and lbl is highly constrained due to their important regulatory functions. Despite this, a variety of forces have shaped the patterns of variation in lb genes: recombination, intragenic gene conversion and natural selection strongly influence background variation created by linkage disequilibrium and dimorphic haplotype structure. The two genes exhibited similar levels of nucleotide diversity and positive selection was detected in the noncoding regions of both genes. However, synonymous variability was significantly higher for lbe: no nonsynonymous changes were observed in this gene. We argue that balancing selection impacts some synonymous sites of the lbe gene. Stability of mRNA secondary structure was significantly different between the lbe (but not lbl) haplotype groups and may represent a driving force of balancing selection in epistatically interacting synonymous sites. Balancing selection on synonymous sites may be the first, or one of a few such observations, in Drosophila. In contrast, recurrent positive selection on lbl at the protein level influenced evolution at three codon sites. Transcription factor binding-site profiles were different for lbe and lbl, suggesting that their developmental functions are not redundant. Combined with our previous results on nucleotide variation in esterase and other homeobox genes, these results suggest that interplay of balancing and directional selection may be a general feature of molecular evolution in Drosophila and other eukaryote genomes
- β¦