3,030 research outputs found
Problems with Using Evolutionary Theory in Philosophy
Does science move toward truths? Are present scientific theories (approximately) true? Should we invoke truths to explain the success of science? Do our cognitive faculties track truths? Some philosophers say yes, while others say no, to these questions. Interestingly, both groups use the same scientific theory, viz., evolutionary theory, to defend their positions. I argue that it begs the question for the former group to do so because their positive answers imply that evolutionary theory is warranted, whereas it is self-defeating for the latter group to do so because their negative answers imply that evolutionary theory is unwarranted
The rodent research animal holding facility as a barrier to environmental contamination
The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent
Multiparameter digitized video microscopy of toxic and hypoxic injury in single cells.
There is no clear picture of the critical events that lead to the transition from reversible to irreversible injury. Many studies have suggested that a rise in cytosolic free Ca2+ initiates plasma membrane bleb formation and a sequence of events that lead ultimately to cell death. In recent studies, we have measured changes in cytosolic free Ca2+, mitochondrial membrane potential, cytosolic pH, and cell surface blebbing in relation to the onset of irreversible injury and cell death following anoxic and toxic injury to single hepatocytes by using multiparameter digitized video microscopy (MDVM). MDVM is an emerging new technology that permits single living cells to be labeled with multiple probes whose fluorescence is responsive to specific cellular parameters of interest. Fluorescence images specific for each probe are collected over time, digitized, and stored. Image analysis and processing then permits quantitation of the spatial distribution of the various parameters with the single living cells. Our results indicate the following: The formation of plasma membrane blebs accompanies all types of injury in hepatocytes. Cell death is a rapid event initiated by rupture of a plasma membrane bleb, and it is coincident with the onset of irreversible injury. An increase of cytosolic free Ca2+ is not the stimulus for bleb formation or the final common pathway leading to cell death. A decrease of mitochondrial membrane potential precedes the loss of cell viability. Cytosolic pH falls by more than 1 pH unit during chemical hypoxia. This acidosis protects against the onset of cell death
Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies
Four mouse monoclonal antibodies (mabs) were shown by immunoblotting procedures to recognize the major, basic, membrane-bound Mr 43,000 protein (43K protein) of acetylcholine receptor-rich postsynaptic membranes from Torpedo nobiliana . These mabs and a mab against an extracellular determinant on the acetylcholine receptor were used to localize the two proteins in electroplax (Torpedo californica) and on unsealed postsynaptic membrane fragments at the ultrastructural level. Bound mabs were revealed with a rabbit anti-mouse Ig serum and protein A-colloidal gold. The anti-43K mabs bound only to the cytoplasmic surface of the postsynaptic membrane. The distributions of the receptor and the 43K protein along the membrane were found to be coextensive. Distances between the membrane center and gold particles were very similar for anti-receptor and anti-43K mabs (29 +/- 7 nm and 26 to 29 +/- 7 to 10 nm, respectively). These results show that the 43K protein is a receptor-specific protein having a restricted spatial relationship to the membrane. They thus support models in which the 43K protein is associated with the cytoplasmic domains of the receptor molecule
Acid Alteration at Mawrth Vallis between the older Fe/Mg-rich Clays and the younger Al/Si-rich Clays
Spectral doublet at 2.21-2.23 and 2.26-2.28 µm attributed to acidic alteration
of Fe/Mg-smectite at Mawrth Vallis
Menopause induces changes to the stratum corneum ceramide profile, which are prevented by hormone replacement therapy
Abstract The menopause can lead to epidermal changes that are alleviated by hormone replacement therapy (HRT). We hypothesise that these changes could relate to altered ceramide production, and that oestrogen may have a role in keratinocyte ceramide metabolism. White Caucasian women were recruited into three groups: pre-menopausal (n = 7), post-menopausal (n = 11) and post-menopausal taking HRT (n = 10). Blood samples were assessed for hormone levels, transepidermal water loss was measured to assess skin barrier function, and stratum corneum lipids were sampled from photoprotected buttock skin. Ceramides and sphingomyelins were analysed by ultraperformance liquid chromatography with electrospray ionisation and tandem mass spectrometry. Post-menopausal stratum corneum contained lower levels of ceramides, with shorter average length; changes that were not evident in the HRT group. Serum oestradiol correlated with ceramide abundance and length. Ceramides had shorter sphingoid bases, indicating altered de novo ceramide biosynthesis. Additionally, post-menopausal women had higher sphingomyelin levels, suggesting a possible effect on the hydrolysis pathway. Treatment of primary human keratinocytes with oestradiol (10 nM) increased production of CER[NS] and CER[NDS] ceramides, confirming an effect of oestrogen on cutaneous ceramide metabolism. Taken together, these data show perturbed stratum corneum lipids post-menopause, and a role for oestrogen in ceramide production
Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS
A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary
Intracellular pH during "chemical hypoxia" in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death.
L'acidose intracellulaire protège de la mort hépato-cellulaire par déplétion d'ATP, un phénomène qui peut représenter une adaptation protectrice contre le stress hypoxique et ischémique
- …