72 research outputs found

    The structure of chromatophores from purple photosynthetic bacteria fused with lipid-impregnated collodion films determined by near-field scanning optical microscopy

    Get PDF
    AbstractLipid-impregnated collodion (nitrocellulose) films have been frequently used as a fusion substrate in the measurement and analysis of electrogenic activity in biological membranes and proteoliposomes. While the method of fusion of biological membranes or proteoliposomes with such films has found a wide application, little is known about the structures formed after the fusion. Yet, knowledge of this structure is important for the interpretation of the measured electric potential. To characterize structures formed after fusion of membrane vesicles (chromatophores) from the purple bacterium Rhodobacter sphaeroides with lipid-impregnated collodion films, we used near-field scanning optical microscopy. It is shown here that structures formed from chromatophores on the collodion film can be distinguished from the lipid-impregnated background by measuring the fluorescence originating either from endogenous fluorophores of the chromatophores or from fluorescent dyes trapped inside the chromatophores. The structures formed after fusion of chromatophores to the collodion film look like isolated (or sometimes aggregated, depending on the conditions) blisters, with diameters ranging from 0.3 to 10 μm (average ≈1 μm) and heights from 0.01 to 1 μm (average ≈0.03 μm). These large sizes indicate that the blisters are formed by the fusion of many chromatophores. Results with dyes trapped inside chromatophores reveal that chromatophores fused with lipid-impregnated films retain a distinct internal water phase

    In Situ Kinetics of Cytochromes

    Get PDF
    ABSTRACT: In Rhodobacter sphaeroides chromatophores, cytochromes (cyt) c 1 and c 2 have closely overlapping spectra, and their spectral deconvolution provides a challenging task. As a result, analyses of the kinetics of different cytochrome components of the bc 1 complex in purple bacteria usually report only the sum cyt c 1 + cyt c 2 kinetics. Here we used newly determined difference spectra of individual components to resolve the kinetics of cyt c 1 and c 2 in situ via a least-squares (LS) deconvolution. We found that the kinetics of cyt c 1 and c 2 are significantly different from those measured using the traditional difference wavelength (DW) approach, based on the difference in the absorbance at two different wavelengths specific for each component. In particular, with the wavelength pairs previously recommended, differences in instrumental calibration led to kinetics of flash-induced cyt c 1 oxidation measured with the DW method which were faster than those determined by the LS method (half-time of ∼120 µs vs half-time of ∼235 µs, in the presence of antimycin). In addition, the LS approach revealed a delay of ∼50 µs in the kinetics of cyt c 1 oxidation, which was masked when the DW approach was used. We attribute this delay to all processes leading to the oxidation of cyt c 1 after light activation of the photosynthetic reaction center, especially the dissociation of cyt c 2 from the reaction center. We also found that kinetics of both cyt c 1 and c 2 measured by the DW approach were significantly distorted at times longer than 1 ms, due to spectral contamination from changes in the b hemes. The successful spectral deconvolution of cyt c 1 and c 2 , and inclusion of both cytochromes in the kinetic analysis, significantly increase the data available for mechanistic understanding of bc 1 turnover in situ

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    The rate of second electron transfer to QB− in bacterial reaction center of impaired proton delivery shows hydrogen-isotope effect

    Get PDF
    Abstract The 2nd electron transfer in reaction center of photosynthetic bacterium Rhodobacter sphaeroides is a two step process in which protonation of QB− precedes interquinone electron transfer. The thermal activation and pH dependence of the overall rate constants of different RC variants were measured and compared in solvents of water (H2O) and heavy water (D2O). The electron transfer variants where the electron transfer is rate limiting (wild type and M17DN, L210DN and H173EQ mutants) do not show solvent isotope effect and the significant decrease of the rate constant of the second electron transfer in these mutants is due to lowering the operational pKa of QB−/QBH: 4.5 (native), 3.9 (L210DN), 3.7 (M17DN) and 3.1 (H173EQ) at pH 7. On the other hand, the proton transfer variants where the proton transfer is rate limiting demonstrate solvent isotope effect of pH-independent moderate magnitude (2.11 ± 0.26 (WT + Ni2 +), 2.16 ± 0.35 (WT + Cd2 +) and 2.34 ± 0.44 (L210DN/M17DN)) or pH-dependent large magnitude (5.7 at pH 4 (L213DN)). Upon deuteration, the free energy and the enthalpy of activation increase in all proton transfer variants by about 1 kcal/mol and the entropy of activation becomes negligible in L210DN/M17DN mutant. The results are interpreted as manifestation of equilibrium and kinetic solvent isotope effects and the structural, energetic and kinetic possibility of alternate proton delivery pathways are discussed

    Site specific labeling of Rhodobacter sphaeroides reaction centers with dye probes for surface pH measurements

    Get PDF
    AbstractCovalently bound pH sensitive dyes are an important tool for characterizing the proteolytic reactions of protein complexes that play key roles in biological energy transduction. Here we demonstrate the feasibility of this method for photosynthetic reaction centers (RCs) for the first time, by the highly selective attachment of two thiol reactive derivatives of fluorescein to the two H subunit cysteines of the photosynthetic RC from Rhodobacter sphaeroides R-26 The pKa shifts of the dyes upon binding to the protein and in response to high salt were measured, and interpreted based on the structure of the RC. 2-[(5-fluoresceinyl)aminocarbonyl]ethyl-methanethiosulfonate was attached to Cys H156 and fluorescein-5-maleimide to Cys H234. By following the absorption changes of bound fluorescein (500 nm), and those of the hydrophilic pH indicator 8-hydroxypyrene-1,3,6-tris-sulfonic acid (468 nm), the surface and bulk pH were monitored separately with less than 5% crosstalk. Flash-induced proton uptake and external calibrations by mixing with aliquots of acid were measured in different redox states of the RCs. The results indicate that the charge in the quinone acceptor complex after flash activation (primary quinone acceptor (QA)− or secondary quinone acceptor (QB)−) has no effect on the surface pH and potential in the vicinity of these two attachment sites, between pH 6.5 and 9. Application of the method to other surface locations is discussed
    corecore