411 research outputs found

    Evidence for Charging Effects in CdTe/CdMgTe Quantum Point Contacts

    Full text link
    Here we report on fabrication and low temperature magnetotransport measurements of quantum point contacts patterned from a novel two-dimensional electron system - CdTe/CdMgTe modulation doped heterostructure. From the temperature and bias dependence we ascribe the reported data to evidence for a weakly bound state which is naturally formed inside a CdTe quantum constrictions due to charging effects. We argue that the spontaneous introduction of an open dot is responsible for the replacement of flat conductance plateaus by quasi-periodic resonances with amplitude less than 2e^{2}/h, as found in our system. Additionally, below 1 K a pattern of weaker conductance peaks, superimposed upon wider resonances, is also observed.Comment: 4 pages, 4 figure

    Magnetic probe for material characterization at optical frequencies

    Get PDF
    Rapid development of novel, functional metamaterials made of purely dielectric, plasmonic, or composite structures which exhibit tunable optical frequency magnetic responses creates a need for new measurement techniques. We propose a method of actively measuring magnetic responses, i.e. magnetic dispersion, of such metamaterials within a wide range of optical frequencies with a single probe by exciting individual elementary cells within a larger matrix. The probe is made of a tapered optical fiber with a radially corrugated metal coating. It concentrates azimuthally polarized light in the near-field below the apex into a subwavelength size focus of the longitudinal magnetic field component. An incident azimuthally polarized beam propagates in the core until it reaches the metal stripes of constant angular width running parallel to the axis. For a broad frequency range light-to-plasmon coupling is assured as the lattice constant changes with the radius due to constant angular width. Bound plasmonic modes in slits between the metal stripes propagate toward the apex where circular currents in stripes and displacement currents in slits generate a strong longitudinal magnetic field. The energy density of the longitudinal magnetic component in the vicinity of the axis is much stronger than that of all the other components combined, what allows for pure magnetic excitation of magnetic resonances rather than by the electric field. The scattered signal is then measured in the far-field and analyzed

    Bi-metal coated aperture SNOM probes

    Get PDF
    Aperture probes of scanning near-field optical microscopes (SNOM) offer resolution which is limited by a sum of the aperture diameter at the tip of a tapered waveguide probe and twice the skin depth in metal used for coating. An increase of resolution requires a decrease of the aperture diameter. However, due to low energy throughput of such probes aperture diameters usually are larger than 50 nm. A groove structure at fiber core-metal coating interface for photon-to-plasmon conversion enhances the energy throughput 5-fold for Al coated probes and 30-fold for Au coated probes due to lower losses in the metal. However, gold coated probes have lower resolution, first due to light coupling from the core to plasmons at the outside of the metal coating, and second due to the skin depth being larger than for Al. Here we report on the impact of a metal bilayer of constant thickness for coating aperture SNOM probes. The purpose of the bilayer of two metals of which the outer one is aluminum and the inner is a noble metal is to assure low losses, hence larger transmission. Using body-of-revolution finite-difference time-domain simulations we analyze properties of probes without corrugations to measure the impact of using a metal bilayer and choose an optimum bi-metal configuration. Additionally we investigate how this type of metalization works in the case of grooved probes

    Excitons in Mott insulators

    Full text link
    Motivated by recent Raman and resonant inelastic X-ray scattering experiments performed for Mott insulators, which suggest formation of excitons in these systems, we present a theory of exciton formation in the upper Hubbard band. The analysis based on the spin polaron approach is performed in the framework of an effective t-J model for the subspace of states with one doubly occupied site. Our results confirm the existence of excitons and bear qualitative resemblance to experimental data despite some simplifications in our approach. They prove that the basic underlying mechanismof exciton formation is the same as that which gives rise to binding of holes in weakly doped antiferromagnets.Comment: 4 pages, 1 figur

    Concentrator of magnetic field of light

    Get PDF
    In the recent decade metamaterials with magnetic permeability different than unity and unusual response to the magnetic field of incident light have been intensively explored. Existence of magnetic artificial materials created an interest in a scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of those metamaterials. We present a method of measuring magnetic responses of such elementary cells within a wide range of optical frequencies with single probes of two types. The first type probe is made of a tapered silica fiber with radial metal stripes separated by equidistant slits of constant angular width. The second type probe is similar to metal coated, corrugated, tapered fiber apertured SNOM probe, but in this case corrugations are radially oriented. Both types of probes have internal illumination with azimuthally polarized light. In the near-field they concentrate into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one

    Optimization of transmission and focusing properties of plasmonic nanolenses

    Get PDF
    We consider two kinds of plasmonic nanolenses which focus radially polarized Laguerre-Gauss beam into subwavelength spot. The first one is free-standing opaque metal layer with concentric grooves on both sides [Phys. Rev. Lett. 102, 183902 (2009)]. The second has slits instead of grooves thus concentric rings have to be integrated with dielectric matrix. Constructive interference of far-field radiation of SPPs scattered on the back side of the lenses gives subwavelength size foci approaching the Rayleigh resolution limit. We investigate transmission and focusing properties of considered metal structures. Choice of appropriate metal such as silver, gold, copper or aluminum strongly affects transmission. Parameters of surface structure determine efficient photon-plasmon coupling and plasmon scattering phenomenon thus influence both transmission and focusing effect. Finally, the choice of dielectric function of surrounding medium gives another degree of freedom to fulfill momentum matching condition for resonant photon-plasmon interaction. In this paper, taking into account the above parameters, we show an optimization procedure, which leads to high transmission, tight focal spot and large focal length of the considered plasmonic nanolenses
    corecore