23 research outputs found
Low dimensional supersymmetric field theories on the lattice
In der vorliegenden Arbeit werden verschiedene supersymmetrische Modelle in einer und zwei Raumzeit-Dimensionen untersucht, welche wesentliche Bestandteile von realistischeren Theorien, wie z.B. dem minimalen supersymmetrischen Standardmodell, beinhalten. Durch die separate Untersuchung der einzelnen Aspekte ist es möglich die Vor- und Nachteile der jeweils verwendeten Gittermethoden herauszuarbeiten. Zusätzlich erlaubt die niedrige Dimensionalität sehr präzise numerische Studien, welche konzeptuelle und technische Probleme bei der Behandlung von supersymmetrischen Theorien auf dem Gitter aufdecken können.
Am Beginn der Untersuchung von supersymmetrischen Theorien auf dem Gitter steht das pädagogische Beispiel einer supersymmetrischen Quantenmechanik mit dynamisch gebrochener Supersymmetrie. Hieran wird die grundlegende Anwendbarkeit von Gittermethoden auf Theorien mit dynamisch gebrochener Supersymmetrie verifiziert. Am N=2 Wess-Zumino-Modell in 1+1 Dimensionen werden fünf verschiedene Gitterformulierungen verglichen, von denen drei eine explizite Realisierung eines Teils der vollen Supersymmetrie auf dem Gitter darstellen. Die Durchführung von hochpräzisen Messungen stellt selbst in zweidimensionalen Theorien eine große numerische Aufgabe dar. Daher werden die algorithmischen Verbesserungen, die im Verlaufe dieser Arbeit benutzt wurden, am Beispiel des N=2 Wess-Zumino-Modells exemplarisch dargestellt. Als Minimalversion einer supersymmetrischen Feldtheorie mit supersymmetriebrechendem Phasenübergang wird das N=1 Wess-Zumino-Modell in 1+1 Dimensionen analysiert. Die letzte Modellklasse dieser Arbeit bilden (supersymmetrische) nichtlineare Sigma-Modelle. Zunächst wird die Instantonen-Struktur von bosonischen nichtlinearen CP(N)-Sigma-Modellen mit getwisteten Randbedingungen konstruiert. Die Arbeit schließt mit einer Analyse des supersymmetrischen nichtlinearen O(3)-Sigma-Modells auf dem Gitter
Casimir Scaling and String Breaking in G(2) Gluodynamics
We study the potential energy between static charges in G(2) gluodynamics in
three and four dimensions. Our work is based on an efficient local hybrid
Monte-Carlo algorithm and a multi-level L\"uscher-Weisz algorithm with
exponential error reduction to accurately measure expectation values of Wilson-
and Polyakov loops. Both in three and four dimensions we show that at
intermediate scales the string tensions for charges in various
G(2)-representations scale with the second order Casimir. In three dimensions
Casimir scaling is confirmed within one percent for charges in representations
of dimensions 7, 14, 27, 64, 77, 77', 182 and 189 and in 4 dimensions within 5
percent for charges in representions of dimensions 7, 14, 27 and 64. In three
dimensions we detect string breaking for charges in the two fundamental
representations. The scale for string breaking agrees very well with the mass
of the created pair of glue-lumps.Comment: 20 pages, 17 figure
Two-Dimensional Wess-Zumino Models at Intermediate Couplings
We consider the two-dimensional N=(2,2) Wess-Zumino model with a cubic
superpotential at weak and intermediate couplings. Refined algorithms allow for
the extraction of reliable masses in a region where perturbation theory no
longer applies. We scrutinize the Nicolai improvement program which is supposed
to guarantee lattice supersymmetry and compare the results for ordinary and
non-standard Wilson fermions with those for SLAC derivatives. It turns out that
this improvement completely fails to enhance simulations for Wilson fermions
and only leads to better results for SLAC fermions. Furthermore, even without
improvement terms the models with all three fermion species reproduce the
correct values for the fermion masses in the continuum limit.Comment: 15 pages, 18 figure
Phase Structure of Z(3)-Polyakov-Loop Models
We study effective lattice actions describing the Polyakov loop dynamics
originating from finite-temperature Yang-Mills theory. Starting with a
strong-coupling expansion the effective action is obtained as a series of
Z(3)-invariant operators involving higher and higher powers of the Polyakov
loop, each with its own coupling. Truncating to a subclass with two couplings
we perform a detailed analysis of the statistical mechanics involved. To this
end we employ a modified mean field approximation and Monte Carlo simulations
based on a novel cluster algorithm. We find excellent agreement of both
approaches concerning the phase structure of the theories. The phase diagram
exhibits both first and second order transitions between symmetric,
ferromagnetic and anti-ferromagnetic phases with phase boundaries merging at
three tricritical points. The critical exponents nu and gamma at the continuous
transition between symmetric and anti-ferromagnetic phases are the same as for
the 3-state Potts model.Comment: 20 pages, 22 figure
Supersymmetry Breaking in Low Dimensional Models
We analyse supersymmetric models that show supersymmetry breaking in one and
two dimensions using lattice methods. Starting from supersymmetric quantum
mechanics we explain the fundamental principles and problems that arise in
putting supersymmetric models onto the lattice. We compare our lattice results
(built upon the non-local SLAC derivative) with numerically exact results
obtained within the Hamiltonian approach. A particular emphasis is put on the
discussion of boundary conditions. We investigate the ground state structure,
mass spectrum, effective potential and Ward identities and conclude that
lattice methods are suitable to derive the physical properties of
supersymmetric quantum mechanics, even with broken supersymmetry. Based on this
result we analyse the two dimensional N=1 Wess-Zumino model with spontaneous
supersymmetry breaking. First we show that (in agreement with earlier
analytical and numerical studies) the SLAC derivative is a sensible choice in
the quenched model, which is nothing but the two dimensional phi^4 model. Then,
we present the very first computation of a renormalised critical coupling for
the complete supersymmetric model. This calculation makes use of Binder
cumulants and is supported by a direct comparison to Ward identity results,
both in the continuum and infinite volume limit. The physical picture is
completed by masses at two selected couplings, one in the supersymmetric phase
and one in the supersymmetry broken phase. Signatures of the Goldstino in the
fermionic correlator are clearly visible in the broken case.Comment: 33 pages, 28 figure