2,527 research outputs found
Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model
For the discrete model suggested by Lorenz in 1996, a one-dimensional long-wave approximation with nonlinear excitation and diffusion is derived. The model is energy conserving but non-Hamiltonian. In a low-order truncation, weak external forcing of the zonal mean flow induces avalanchelike breather solutions which cause reversal of the mean flow by a wave-mean flow interaction. The mechanism is an outburst-recharge process similar to avalanches in a sandpile model
Modeling views in the layered view model for XML using UML
In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction
Next-generation metrics: responsible metrics and evaluation for open science
This is the final report of the European Commission's Expert Group on Altmetrics, which undertook its work over the course of 2016. The report outlines a framework for next-generation metrics in the context of the EC's Open Science agenda and includes a series of recommendations for how responsible metrics can be built into the design and evaluation of the EU's Ninth Framework Programme (FP9)
Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA)
The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data – namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003–2009), gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003–2009) and bedrock uplift (GPS; 1995–2013). The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745). The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions. This paper presents the first of two contributions summarizing the work carried out within a European Space Agency funded study: Regional glacial isostatic adjustment and CryoSat elevation rate corrections in Antarctica (REGINA)
Spin measurements for 147Sm+n resonances: Further evidence for non-statistical effects
We have determined the spins J of resonances in the 147Sm(n,gamma) reaction
by measuring multiplicities of gamma-ray cascades following neutron capture.
Using this technique, we were able to determine J values for all but 14 of the
140 known resonances below En = 1 keV, including 41 firm J assignments for
resonances whose spins previously were either unknown or tentative. These new
spin assignments, together with previously determined resonance parameters,
allowed us to extract separate level spacings and neutron strength functions
for J = 3 and 4 resonances. Furthermore, several statistical test of the data
indicate that very few resonances of either spin have been missed below En =
700eV. Because a non-statistical effect recently was reported near En = 350 eV
from an analysis of 147Sm(n,alpha) data, we divided the data into two regions;
0 < En < 350 eV and 350 < En < 700 eV. Using neutron widths from a previous
measurement and published techniques for correcting for missed resonances and
for testing whether data are consistent with a Porter-Thomas distribution, we
found that the reduced-neutron-width distribution for resonances below 350 eV
is consistent with the expected Porter-Thomas distribution. On the other hand,
we found that reduced-neutron-width data in the 350 < En < 700 eV region are
inconsistent with a Porter-Thomas distribution, but in good agreement with a
chi-squared distribution having two or more degrees of freedom. We discuss
possible explanations for these observed non-statistical effects and their
possible relation to similar effects previously observed in other nuclides.Comment: 40 pages, 13 figures, accepted by Phys. Rev.
Non-Statistical Effects in Neutron Capture
There have been many reports of non-statistical effects in neutron-capture
measurements. However, reports of deviations of reduced-neutron-width
distributions from the expected Porter-Thomas (PT) shape largely have been
ignored. Most of these deviations have been reported for odd-A nuclides.
Because reliable spin (J) assignments have been absent for most resonances for
such nuclides, it is possible that reported deviations from PT might be due to
incorrect J assignments. We recently developed a new method for measuring spins
of neutron resonances by using the DANCE detector at LANSCE. Measurements made
with a 147Sm sample allowed us to determine spins of almost all known
resonances below 1 keV. Furthermore, analysis of these data revealed that the
reduced-neutron-width distribution was in good agreement with PT for resonances
below 350 eV, but in disagreement with PT for resonances between 350 and 700
eV. Our previous (n,alpha) measurements had revealed that the alpha strength
function also changes abruptly at this energy. There currently is no known
explanation for these two non-statistical effects. Recently, we have developed
another new method for determining the spins of neutron resonances. To
implement this technique required a small change (to record pulse-height
information for coincidence events) to a much simpler apparatus: A pair of C6D6
gamma-ray detectors which we have employed for many years to measure
neutron-capture cross sections at ORELA. Measurements with a 95Mo sample
revealed that not only does the method work very well for determining spins,
but it also makes possible parity assignments. Taken together, these new
techniques at LANSCE and ORELA could be very useful for further elucidation of
non-statistical effects.Comment: 8 pages, 3 figures, for proceedings of CGS1
To Use or Not to Use: The Design, Implementation and Acceptance of Technology in the Context of Health Care
Technology in general, and assistive technology in particular, is considered to be a promising opportunity to address the challenges of an aging population. Nevertheless, in health care, technology is not as widely used as could be expected. In this chapter, an overview is given of theories and models that help to understand this phenomenon. First, the design of (assistive) technologies will be addressed and the importance of human-centered design in the development of new assistive devices will be discussed. Also theories and models are addressed about technology acceptance in general. Specific attention will be given to technology acceptance in healthcare professionals, and the implementation of technology within healthcare organizations. The chapter will be based on the state of the art of scientific literature and will be illustrated with examples from our research in daily practice considering the different perspectives of involved stakeholders
Conjoint analysis of researchers' hidden preferences for bibliometrics, altmetrics, and usage metrics
The amount of annually published scholarly articles is growing steadily, as is the number of indicators through which impact of publications is measured. Little is known about how the increasing variety of available metrics affects researchers' processes of selecting literature to read. We conducted ranking experiments embedded into an online survey with 247 participating researchers, most from social sciences. Participants completed series of tasks in which they were asked to rank fictitious publications regarding their expected relevance, based on their scores regarding six prototypical metrics. Through applying logistic regression, cluster analysis, and manual coding of survey answers, we obtained detailed data on how prominent metrics for research impact influence our participants in decisions about which scientific articles to read. Survey answers revealed a combination of qualitative and quantitative characteristics that researchers consult when selecting literature, while regression analysis showed that among quantitative metrics, citation counts tend to be of highest concern, followed by Journal Impact Factors. Our results suggest a comparatively favorable view of many researchers on bibliometrics and widespread skepticism toward altmetrics. The findings underline the importance of equipping researchers with solid knowledge about specific metrics' limitations, as they seem to play significant roles in researchers' everyday relevance assessments
- …