25 research outputs found
A Novel Case-Finding Instrument for Chronic Obstructive Pulmonary Disease in Low- and Middle-Income Country Settings
Background: Low- and middle-income countries (LMICs) account for >90% of deaths and
illness episodes related to COPD; however, this condition is commonly underdiagnosed in
these settings. Case-finding instruments for COPD may improve diagnosis and identify
individuals that need treatment, but few have been validated in resource-limited settings.
Methods: We conducted a population-based cross-sectional study in Uganda to assess the
diagnostic accuracy of a respiratory symptom, exposure and functional questionnaire in
combination with peak expiratory flow for COPD diagnosis using post-bronchodilator
FEV1/FVC z-score below the 5th percentile as the gold standard. We included locally
relevant exposure questions and statistical learning techniques to identify the most important
risk factors for COPD. We used 80% of the data to develop the case-finding instrument and
validated it in the remaining 20%. We evaluated for calibration and discrimination using
standard approaches. The final score, COLA (COPD in LMICs Assessment), included seven
questions, age and pre-bronchodilator peak expiratory flow.
Results: We analyzed data from 1,173 participants (average age 47 years, 46.9% male, 4.5%
with COPD) with acceptable and reproducible spirometry. The seven questions yielded
a cross-validated area-under-the-curve [AUC] of 0.68 (95% CI 0.61–0.75) with higher scores
conferring greater odds of COPD. The inclusion of peak expiratory flow and age improved
prediction in a validation sample (AUC=0.83, 95% CI 0.78–0.88) with a positive predictive
value of 50% and a negative predictive value of 96%. The final instrument (COLA) included
seven questions, age and pre-bronchodilator peak expiratory flow.
Conclusion: COLA predicted COPD in urban and rural settings in Uganda has high
calibration and discrimination, and could serve as a simple, low-cost screening tool in
resource-limited settings
Effectiveness of low-dose theophylline for the management of biomass-associated COPD (LODOT-BCOPD): study protocol for a randomized controlled trial
BACKGROUND: COPD is a leading cause of death globally, with the majority of morbidity and mortality occurring in low- and middle-income country (LMIC) settings. While tobacco-smoke exposure is the most important risk factor for COPD in high-income settings, household air pollution from biomass smoke combustion is a leading risk factor for COPD in LMICs. Despite the high burden of biomass smoke-related COPD, few studies have evaluated the efficacy of pharmacotherapy in this context. Currently recommended inhaler-based therapy for COPD is neither available nor affordable in most resource-limited settings. Low-dose theophylline is an oral, once-a-day therapy, long used in high-income countries (HICs), which has been proposed for the management of COPD in LMICs in the absence of inhaled steroids and/or bronchodilators. The Low-dose Theophylline for the Management of Biomass-Associated COPD (LODOT-BCOPD) trial investigates the clinical efficacy and cost-effectiveness of low-dose theophylline for the management of biomass-related COPD in a low-income setting. METHODS: LODOT-BCOPD is a randomized, double-blind, placebo-controlled trial to test the efficacy of low-dose theophylline in improving respiratory symptoms in 110 participants with moderate to severe COPD in Central Uganda. The inclusion criteria are as follows: (1) age 40 to 80 years, (2) full-time resident of the study area, (3) daily biomass exposure, (4) post-bronchodilator FEV1/FVC below the 5th percentile of the Global Lung Initiative mixed ethnic reference population, and (5) GOLD Grade B-D COPD. Participants will be randomly assigned to receive once daily low-dose theophylline (200 mg ER, Unicontin-E) or placebo for 52 weeks. All participants will receive education about self-management of COPD and rescue salbutamol inhalers. We will measure health status using the St. George's Respiratory Questionnaire (SGRQ) and quality of life using the EuroQol-5D (EQ-5D) at baseline and every 6 months. In addition, we will assess household air pollution levels, serum inflammatory biomarkers (fibrinogen, hs-CRP), and theophylline levels at baseline, 1 month, and 6 months. The primary outcome is change in SGRQ score at 12 months. Lastly, we will assess the cost-effectiveness of the intervention by calculating quality-adjusted life years (QALYs) from the EQ-5D. TRIAL REGISTRATION: ClinicalTrials.gov NCT03984188 . Registered on June 12, 2019 TRIAL ACRONYM: Low-dose Theophylline for the Management of Biomass-Associated COPD (LODOT-BCOPD)
Discriminative Accuracy of Chronic Obstructive Pulmonary Disease Screening Instruments in 3 Low- and Middle-Income Country Settings
Importance: Most of the global morbidity and mortality in chronic obstructive pulmonary disease (COPD) occurs in low- and middle-income countries (LMICs), with significant economic effects. Objective: To assess the discriminative accuracy of 3 instruments using questionnaires and peak expiratory flow (PEF) to screen for COPD in 3 LMIC settings. Design, Setting, and Participants: A cross-sectional analysis of discriminative accuracy, conducted between January 2018 and March 2020 in semiurban Bhaktapur, Nepal; urban Lima, Peru; and rural Nakaseke, Uganda, using a random age- and sex-stratified sample of the population 40 years or older. Exposures: Three screening tools, the COPD Assessment in Primary Care to Identify Undiagnosed Respiratory Disease and Exacerbation Risk (CAPTURE; range, 0-6; high risk indicated by a score of 5 or more or score 2-5 with low PEF [<250 L/min for females and <350 L/min for males]), the COPD in LMICs Assessment questionnaire (COLA-6; range, 0-5; high risk indicated by a score of 4 or more), and the Lung Function Questionnaire (LFQ; range, 0-25; high risk indicated by a score of 18 or less) were assessed against a reference standard diagnosis of COPD using quality-assured postbronchodilator spirometry. CAPTURE and COLA-6 include a measure of PEF. Main Outcomes and Measures: The primary outcome was discriminative accuracy of the tools in identifying COPD as measured by area under receiver operating characteristic curves (AUCs) with 95% CIs. Secondary outcomes included sensitivity, specificity, positive predictive value, and negative predictive value. Results: Among 10 709 adults who consented to participate in the study (mean age, 56.3 years (SD, 11.7); 50% female), 35% had ever smoked, and 30% were currently exposed to biomass smoke. The unweighted prevalence of COPD at the 3 sites was 18.2% (642/3534 participants) in Nepal, 2.7% (97/3550) in Peru, and 7.4% (264/3580) in Uganda. Among 1000 COPD cases, 49.3% had clinically important disease (Global Initiative for Chronic Obstructive Lung Disease classification B-D), 16.4% had severe or very severe airflow obstruction (forced expiratory volume in 1 second <50% predicted), and 95.3% of cases were previously undiagnosed. The AUC for the screening instruments ranged from 0.717 (95% CI, 0.677-0.774) for LFQ in Peru to 0.791 (95% CI, 0.770-0.809) for COLA-6 in Nepal. The sensitivity ranged from 34.8% (95% CI, 25.3%-45.2%) for COLA-6 in Nepal to 64.2% (95% CI, 60.3%-67.9%) for CAPTURE in Nepal. The mean time to administer the instruments was 7.6 minutes (SD 1.11), and data completeness was 99.5%. Conclusions and Relevance: This study demonstrated that screening instruments for COPD were feasible to administer in 3 low- and middle-income settings. Further research is needed to assess instrument performance in other low- and middle-income settings and to determine whether implementation is associated with improved clinical outcomes
Hair cortisol as a novel biomarker of HPA suppression by inhaled corticosteroids in children
Background: Asthma is the most common chronic condition in childhood, and the recommended pharmacotherapy for long-term control includes the use of inhaled corticosteroids (ICS). ICS were designed to act at the site of inflammation in the lung, thus decreasing systemic absorption and reducing the risk of adverse effects associated with corticosteroid use (e.g., HPA suppression and its consequent effects). Available data show that measurement of hair cortisol successfully reflects endogenous cortisol levels. We sought to examine whether hair cortisol measurements can be used to identify HPA suppression surrounding ICS therapy in children with asthma.Methods:Hair samples were collected from the vertex posterior region of the head of 18 asthmatic children. We compared their hair cortisol concentration during ICS use with the concentration prior to ICS use.Results:During ICS therapy, median hair cortisol levels were twofold lower compared with the period of no ICS use (median 89.8 ng/g vs. 198.2 ng/g, P = 0.0015).Conclusion:Hair cortisol is an effective biomarker of the HPA suppression associated with ICS therapy and can be a sensitive tool for determining systemic effects of ICS use and monitoring adherence. Future research is needed to characterize the effect of untreated asthma on hair cortisol concentrations, if any