53 research outputs found

    Increased Oral Detection, but Decreased Intestinal Signaling for Fats in Mice Lacking Gut Microbiota

    Get PDF
    Germ-free (GF) mice lacking intestinal microbiota are significantly leaner than normal (NORM) control mice despite consuming more calories. The contribution of microbiota on the recognition and intake of fats is not known. Thus, we investigated the preference for, and acceptance of, fat emulsions in GF and NORM mice, and associated changes in lingual and intestinal fatty acid receptors, intestinal peptide content, and plasma levels of gut peptides. GF and NORM C57Bl/6J mice were given 48-h two-bottle access to water and increasing concentrations of intralipid emulsions. Gene expression of the lingual fatty acid translocase CD36 and protein expression of intestinal satiety peptides and fatty-acid receptors from isolated intestinal epithelial cells were determined. Differences in intestinal enteroendocrine cells along the length of the GI tract were quantified. Circulating plasma satiety peptides reflecting adiposity and biochemical parameters of fat metabolism were also examined. GF mice had an increased preference and intake of intralipid relative to NORM mice. This was associated with increased lingual CD36 (P<0.05) and decreased intestinal expression of fatty acid receptors GPR40 (P<0.0001), GPR41 (P<0.0001), GPR43 (P<0.05), and GPR120 (P<0.0001) and satiety peptides CCK (P<0.0001), PYY (P<0.001), and GLP-1 (P<0.001). GF mice had fewer enteroendocrine cells in the ileum (P<0.05), and more in the colon (P<0.05), relative to NORM controls. Finally, GF mice had lower levels of circulating leptin and ghrelin (P<0.001), and altered plasma lipid metabolic markers indicative of energy deficits. Increased preference and caloric intake from fats in GF mice are associated with increased oral receptors for fats coupled with broad and marked decreases in expression of intestinal satiety peptides and fatty-acid receptors

    Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham Heart Study data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholesterol concentrations in blood are related to cardiovascular diseases. Recent genome-wide association studies (GWAS) of cholesterol levels identified a number of single-locus effects on total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) levels. Here, we report single-locus and epistasis SNP effects on TC and HDL-C using the Framingham Heart Study (FHS) data.</p> <p>Results</p> <p>Single-locus effects and pairwise epistasis effects of 432,096 SNP markers were tested for their significance on log-transformed TC and HDL-C levels. Twenty nine additive SNP effects reached single-locus genome-wide significance (p < 7.2 × 10<sup>-8</sup>) and no dominance effect reached genome-wide significance. Two new gene regions were detected, the <it>RAB3GAP1-R3HDM1-LCT-MCM6 </it>region of chr02 for TC identified by six new SNPs, and the <it>OSBPL8-ZDHHC17 </it>region (chr12) for HDL-C identified by one new SNP. The remaining 22 single-locus SNP effects confirmed previously reported genes or gene regions. For TC, three SNPs identified two gene regions that were tightly linked with previously reported genes associated with TC, including rs599839 that was 10 bases downstream <it>PSRC1 </it>and 3.498 kb downstream <it>CELSR2</it>, rs4970834 in <it>CELSR2</it>, and rs4245791 in <it>ABCG8 </it>that slightly overlapped with <it>ABCG5</it>. For HDL-C, <it>LPL </it>was confirmed by 12 SNPs 8-45 kb downstream, <it>CETP </it>by two SNPs 0.5-11 kb upstream, and the <it>LIPG-ACAA2 </it>region by five SNPs inside this region. Two epistasis effects on TC and thirteen epistasis effects on HDL-C reached the significance of "suggestive linkage". The most significant epistasis effect (p = 5.72 × 10<sup>-13</sup>) was close to reaching "significant linkage" and was a dominance × dominance effect of HDL-C between <it>LMBRD1 </it>(chr06) and the <it>LRIG3 </it>region (chr12), and this pair of gene regions had six other D × D effects with "suggestive linkage".</p> <p>Conclusions</p> <p>Genome-wide association analysis of the FHS data detected two new gene regions with genome-wide significance, detected epistatic SNP effects on TC and HDL-C with the significance of suggestive linkage in seven pairs of gene regions, and confirmed some previously reported gene regions associated with TC and HDL-C.</p

    Gut Microbiota and Obesity

    No full text

    Gut Microbiome and Obesity. How to Prove Causality?

    No full text
    • …
    corecore