284 research outputs found
Extracting the rp-process from X-ray burst light curves
The light curves of type I X-ray bursts (XRBs) result from energy released
from the atmosphere of a neutron star when accreted hydrogen and helium ignite
and burn explosively via the rp-process. Since charged particle reaction rates
are both density and very temperature dependent, a simulation model must
provide accurate values of these variables to predict the reaction flow. This
paper uses a self-consistent one-dimensional model calculation with a constant
accretion rate of dM/dt=5e16g/s (0.045 Eddington) and reports on the detailed
rp-process reaction flow of a given burst.Comment: 4 pages, submitted to Nucl. Phys. A as part of the Nuclei in Cosmos 8
proceeding
Thermonuclear Reaction Rate of 23Mg(p,gamma)24$Al
Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by
using all available experimental information on 24Al excitation energies.
Proton and gamma-ray partial widths for astrophysically important resonances
are derived from shell model calculations. Correspondences of experimentally
observed 24Al levels with shell model states are based on application of the
isobaric multiplet mass equation. Our new rates suggest that the
23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20
region during thermonuclear runaways on massive white dwarfs.Comment: 13 pages (uses Revtex) including 3 postscript figures (uses
epsfig.sty), accepted for publication in Phys. Rev.
rp-Process weak-interaction mediated rates of waiting-point nuclei
Electron capture and positron decay rates are calculated for
neutron-deficient Kr and Sr waiting point nuclei in stellar matter. The
calculation is performed within the framework of pn-QRPA model for rp-process
conditions. Fine tuning of particle-particle, particle-hole interaction
parameters and a proper choice of the deformation parameter resulted in an
accurate reproduction of the measured half-lives. The same model parameters
were used to calculate stellar rates. Inclusion of measured Gamow-Teller
strength distributions finally led to a reliable calculation of weak rates that
reproduced the measured half-lives well under limiting conditions. For the
rp-process conditions, electron capture and positron decay rates on Kr
and Sr are of comparable magnitude whereas electron capture rates on
Sr and Kr are 1--2 orders of magnitude bigger than the
corresponding positron decay rates. The pn-QRPA calculated electron capture
rates on Kr are bigger than previously calculated. The present
calculation strongly suggests that, under rp-process conditions, electron
capture rates form an integral part of weak-interaction mediated rates and
should not be neglected in nuclear reaction network calculations as done
previously.Comment: 13 pages, 4 figures, 4 tables; Astrophysics and Space Science (2012
Proton Drip-Line Calculations and the Rp-process
One-proton and two-proton separation energies are calculated for proton-rich
nuclei in the region . The method is based on Skyrme Hartree-Fock
calculations of Coulomb displacement energies of mirror nuclei in combination
with the experimental masses of the neutron-rich nuclei. The implications for
the proton drip line and the astrophysical rp-process are discussed. This is
done within the framework of a detailed analysis of the sensitivity of rp
process calculations in type I X-ray burst models on nuclear masses. We find
that the remaining mass uncertainties, in particular for some nuclei with
, still lead to large uncertainties in calculations of X-ray burst light
curves. Further experimental or theoretical improvements of nuclear mass data
are necessary before observed X-ray burst light curves can be used to obtain
quantitative constraints on ignition conditions and neutron star properties. We
identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table
Ultracold collisions of oxygen molecules
Collision cross sections and rate constants between two ground- state oxygen
molecules are investigated theoretically at translational energies below K and in zero magnetic field. We present calculations for elastic and spin-
changing inelastic collision rates for different isotopic combinations of
oxygen atoms as a prelude to understanding their collisional stability in
ultracold magnetic traps. A numerical analysis has been made in the framework
of a rigid- rotor model that accounts fully for the singlet, triplet, and
quintet potential energy surfaces in this system. The results offer insights
into the effectiveness of evaporative cooling and the properties of molecular
Bose- Einstein condensates, as well as estimates of collisional lifetimes in
magnetic traps. Specifically, looks like a good candidate for
ultracold studies, while is unlikely to survive evaporative
cooling. Since is representative of a wide class of molecules that
are paramagnetic in their ground state we conclude that many molecules can be
successfully magnetically trapped at ultralow temperatures.Comment: 15 pages, 9 figure
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
The endpoint of the rp process on accreting neutron stars
We calculate the rapid proton (rp) capture process of hydrogen burning on the
surface of an accreting neutron star with an updated reaction network that
extends up to Xe, far beyond previous work. In both steady-state nuclear
burning appropriate for rapidly accreting neutron stars (such as the magnetic
polar caps of accreting X-ray pulsars) and unstable burning of Type I X-ray
bursts, we find that the rp process ends in a closed SnSbTe cycle. This
prevents the synthesis of elements heavier than Te and has important
consequences for X-ray burst profiles, the composition of accreting neutron
stars, and potentially galactic nucleosynthesis of light p nuclei.Comment: 6 pages, including 4 figures, accepted for publication in Phys. Rev.
Let
Reaction rate for S31(p,)32Cl and its influence on the SiP cycle in hot stellar hydrogen burning
The excitation energies of the proton unbound states in Cl32 have been measured in the S32(3He,t)32Cl charge exchange reaction with high accuracy. The partial widths of the unbound levels have been calculated to derive the resonance strengths of these states in the S31(p,)32Cl reaction channel. The reaction rate for the S31(p,)32Cl reaction has been calculated and is compared with previous estimates. The role of this reaction for the closure of the SiP cycle is discussed in terms of the temperature and density conditions in hot stellar hydrogen burning
- …