85 research outputs found

    Kinetics of the adsorption of atomic oxygen (N2O) on the Si(001)2x1 surface as revealed by the change in the surface conductance

    Get PDF
    The adsorption behaviour of N2O on the Si(001)2 × 1 surface at 300 K substrate temperature has been investigated by measuring in situ the surface conductance during the reaction process. For comparison we monitored in the same way the adsorption of O2 on the same surface which ultimately leads to the flat band situation. The adsorption of atomic oxygen as released by decomposition of the N2O molecule, in contrast with molecular oxygen, was found to result in an increase of the band bending. The difference in behaviour of the change of the surface conductance between the two solid-gas reactions can be explained by considering that the adsorption of O2 will also remove deep-lying backbond states in addition to the dangling bond (DB) and dimer bond (DM) related surface states. It is well known that only the DB and DM surface states are affected by N2O. The surface conductance measurements (SCM) presented in this paper complement our previous spectroscopic differential reflectivity measurements and Auger electron spectroscopic results for the system Si(001)2 × 1 + N2O; we have found evidence that the second step of the proposed three-stage adsorption process of atomic oxygen can be divided into two substages. From our SCM data we could derive that the distance between the valence band edge and the Fermi energy of the clean Si(001)2 × 1 surface is 0.32 ± 0.02 eV, which is in agreement with previous photoemission results

    Effect of quantum confinement on the dielectric function of PbSe

    Get PDF
    Monolayers of lead selenide nanocrystals of a few nanometers in height have been made by electrodeposition on a Au(111) substrate. These layers show a thickness-dependent dielectric function, which was determined using spectroscopic ellipsometry. The experimental results are compared with electronic structure calculations of the imaginary part of the dielectric function of PbSe nanocrystals. We demonstrate that the size-dependent variation of the dielectric function is affected by quantum confinement at well-identifiable points in the Brillouin zone, different from the position of the band-gap transition

    Adsorption of atomic and molecular oxygen on Si(100)2x1: coverage dependence of the Auger O KVV lineshape.

    Get PDF
    By means of Auger electron spectroscopy (AES) we have monitored the room temperature adsorption of O2 and N2O on the clean Si(0 0 1)2 × 1 surface. We have found, for the first time, a significant variation in the intensity ratio of the K L1 L1 and K L23 L23 O Auger lines in the submonolayer range. This variation can be related to a change in bonding configuration of the oxygen atom/molecule in the initial adsorption stage in which the influence of inter-atomic matrix elements of the Auger process cannot be neglected

    Positive streamer propagation due to background or photo ionization: Experiments and theory

    Get PDF
    Positive streamers in air are generally believed to propagate against the electron drift direction due to the nonlocal photo-ionization reaction. Photo-ionization is the ionization of O2 molecules by UV radiation from excited N2 molecules; therefore this reaction depends on the ratio between oxygen and nitrogen. Another possible source of free electrons in front of a positive streamer is background ionization that can remain from previous discharges, or it can be created by cosmic rays or by radioactive species like radon. We study the effects of both photo- and background- ionization on propagation and morphology of positive streamers by changing the ratio between nitrogen and oxygen and by changing the repetition frequency. We also study streamers in pure nitrogen with a small addition of radioactive 85Kr to increase background ionization. While streamer velocities are amazingly insensitive to these changes, their overall morphology largely depends on gas composition, repetition rate and radioactive admixtures. Essential observations can are explained theoretically

    Feather-like structures in positive streamers interpreted as electron avalanches

    Get PDF
    In experiments positive streamers can have a feather-like structure, with small hairs connected to the main streamer channel. These feathers were observed in pure nitrogen (with impurities of 1 ppm oxygen or less) but not in air. We hypothesize that these hairs are individual electron avalanches moving towards the streamer channel. Based on results of numerical simulations, we provide a theoretical explanation why these hairs are visible in nitrogen, but not in air

    Feather-like structures in positive streamers.

    Get PDF
    In experiments positive streamers can have a feather-like structure, with small hairs connected to the main streamer channel. These feathers were observed in pure nitrogen (with impurities of 1ppm oxygen or less) but not in air. Based on results of numerical simulations, we provide a theoretical explanation for the emergence of these hairs as well as why the hairs are visible in nitrogen, but not in air

    Effects of deposition dynamics on epitaxial growth

    Full text link
    The dynamic effects, such as the steering and the screening effects during deposition, on an epitaxial growth (Cu/Cu(001)), is studied by kinetic Monte Carlo simulation that incorporates molecular dynamic simulation to rigorously take the interaction of the deposited atom with the substrate atoms into account. We find three characteristic features of the surface morphology developed by grazing angle deposition: (1) enhanced surface roughness, (2) asymmetric mound, and (3) asymmetric slopes of mound sides. Regarding their dependence on both deposition angle and substrate temperature, a reasonable agreement of the simulated results with the previous experimental ones is found. The characteristic growth features by grazing angle deposition are mainly caused by the inhomogeneous deposition flux due to the steering and screening effects, where the steering effects play the major role rather than the screening effects. Newly observed in the present simulation is that the side of mound in each direction is composed of various facets instead of all being in one selected mound angle even if the slope selection is attained, and that the slope selection does not necessarily mean the facet selection.Comment: 9 pages, 10 figure
    • …
    corecore