422 research outputs found

    A variable amplitude fretting fatigue life estimation technique: formulation and experimental validation

    Get PDF
    The aims of the research work summarised in this paper are twofold. The first goal is to make available a large number of new experimental results generated by testing specimens of grey cast iron under both constant and variable amplitude fretting fatigue loading. The second goal is to formulate an advanced fretting fatigue design approach based on the combined use of the Modified Wӧhler Curve Method, the Theory of Critical Distances and the Shear Stress-Maximum Variance Method. The validation exercise based on the experimental results being produced demonstrates that the proposed methodology is a powerful tool suitable for designing mechanical assemblies against fretting fatigue

    On Bootstrap Percolation in Living Neural Networks

    Full text link
    Recent experimental studies of living neural networks reveal that their global activation induced by electrical stimulation can be explained using the concept of bootstrap percolation on a directed random network. The experiment consists in activating externally an initial random fraction of the neurons and observe the process of firing until its equilibrium. The final portion of neurons that are active depends in a non linear way on the initial fraction. The main result of this paper is a theorem which enables us to find the asymptotic of final proportion of the fired neurons in the case of random directed graphs with given node degrees as the model for interacting network. This gives a rigorous mathematical proof of a phenomena observed by physicists in neural networks

    Spectra of complex networks

    Full text link
    We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local tree-like structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues ρ(λ)\rho(\lambda) at large λ|\lambda| is related to the behavior of the vertex degree distribution P(k)P(k) at large kk. In particular, as P(k)kγP(k) \sim k^{-\gamma}, ρ(λ)λ12γ\rho(\lambda) \sim |\lambda|^{1-2\gamma}. We propose a simple approximation, which enables us to calculate spectra of various graphs analytically. We analyse spectra of various complex networks and discuss the role of vertices of low degree. We show that spectra of locally tree-like random graphs may serve as a starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.Comment: 10 pages, 4 figure

    A variable amplitude fretting fatigue life estimation technique: formulation and experimental validation

    Get PDF
    The aims of the research work summarised in this paper are twofold. The first goal is to make available a large number of new experimental results generated by testing specimens of grey cast iron under both constant and variable amplitude fretting fatigue loading. The second goal is to formulate an advanced fretting fatigue design approach based on the combined use of the Modified Wӧhler Curve Method, the Theory of Critical Distances and the Shear Stress-Maximum Variance Method. The validation exercise based on the experimental results being produced demonstrates that the proposed methodology is a powerful tool suitable for designing mechanical assemblies against fretting fatigue

    A double-sided silicon micro-strip super-module for the ATLAS inner detector upgrade in the high-luminosity LHC

    Get PDF
    The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail

    Finite Lifetime Estimation of Mechanical Assemblies Subjected to Fretting Fatigue Loading

    Get PDF
    This paper proposes a new design method for predicting the finite lifetime of mechanical assemblies subjected to constant amplitude (CA) fretting fatigue loading. The proposed methodology is based on the use of the Modified Wӧhler Curve Method (MWCM) applied in conjunction with the Theory of Critical Distance (TCD) and the Shear Stress-Maximum Variance Method (τ-MVM). In more detail, this engineering approach uses the τ-MVM to calculate the stress quantities relative to the critical plane, whose orientation is determined numerically by locating the plane containing the direction experiencing the maximum variance of the resolved shear stress. To estimate the fretting fatigue lifetime, the time-variable linear elastic stress quantities are post processed according to the MWCM applied in conjunction with the TCD. The proposed approach was checked against experimental data taken from the literature and generated by testing specimens made of aluminium alloy Al 7075-T6. The extensive validation supports the idea that the MWCM applied in conjunction with both the TCD and τ-MVM can be suitable to predict the finite lifetime of mechanical assemblies subjected to fretting fatigue loading

    A double-sided, shield-less stave prototype for the ATLAS upgrade strip tracker for the high luminosity LHC

    Get PDF
    A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools

    The Sight Loss and Vision Priority Setting Partnership (SLV-PSP): overview and results of the research prioritisation survey process

    Get PDF
    Objectives: The Sight Loss and Vision Priority Setting Partnership aimed to identify research priorities relating to sight loss and vision through consultation with patients, carers and clinicians. These priorities can be used to inform funding bodies’ decisions and enhance the case for additional research funding. Design: Prospective survey with support from the James Lind Alliance. Setting: UK-wide National Health Service (NHS) and non-NHS. Participants: Patients, carers and eye health professionals. Academic researchers were excluded solely from the prioritisation process. The survey was disseminated by patient groups, professional bodies, at conferences and through the media, and was available for completion online, by phone, by post and by alternative formats (Braille and audio). Outcome measure: People were asked to submit the questions about prevention, diagnosis and treatment of sight loss and eye conditions that they most wanted to see answered by research. Returned survey questions were reviewed by a data assessment group. Priorities were established across eye disease categories at final workshops. Results: 2220 people responded generating 4461 submissions. Sixty-five per cent of respondents had sight loss and/or an eye condition. Following initial data analysis, 686 submissions remained which were circulated for interim prioritisation (excluding cataract and ocular cancer questions) to 446 patients/carers and 218 professionals. The remaining 346 questions were discussed at final prioritisation workshops to reach agreement of top questions per category. Conclusions: The exercise engaged a diverse community of stakeholders generating a wide range of conditions and research questions. Top priority questions were established across 12 eye disease categories. This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial
    corecore