116 research outputs found

    Plant-animal worms round themselves up in circular mills on the beach

    Get PDF
    © 2018 The Authors. Collective motion is a fascinating and intensely studied manifestation of collective behaviour. Circular milling is an impressive example. It occurs in fishes, processionary caterpillars and army ants, among others. Its adaptive significance, however, is not yet well understood. Recently, we demonstrated experimentally circular milling in the marine plant-animal worm Symsagittifera roscoffensis.We hypothesized that its function is to gather the worms and facilitate the dense films they form on the beach to promote the photosynthesis of their symbiotic algae. Here, we report for the first time, to our knowledge, the occurrence of S. roscoffensis circular mills in nature and show that it is by no means rare. The size and behaviour of circular mills in their natural environment is compatible with our earlier experimental results. This makes S. roscoffensis a good study system for understanding the proximate and ultimate mechanisms of circular milling

    The PiNe box: development and validation of an electronic device to time-lock multimodal responses to sensory stimuli in hospitalised infants

    Get PDF
    Recording multimodal responses to sensory stimuli in infants provides an integrative approach to investigate the developing nervous system. Accurate time-locking across modalities is essential to ensure that responses are interpreted correctly, and could also improve clinical care, for example, by facilitating automatic and objective multimodal pain assessment. Here we develop and assess a system to time-lock stimuli (including clinically-required heel lances and experimental visual, auditory and tactile stimuli) to electrophysiological research recordings and data recorded directly from a hospitalised infant's vital signs monitor. The electronic device presented here (that we have called 'the PiNe box') integrates a previously developed system to time-lock stimuli to electrophysiological recordings and can simultaneously time-lock the stimuli to recordings from hospital vital signs monitors with an average precision of 105 ms (standard deviation: 19 ms), which is sufficient for the analysis of changes in vital signs. Our method permits reliable and precise synchronisation of data recordings from equipment with legacy ports such as TTL (transistor-transistor logic) and RS-232, and patient-connected networkable devices, is easy to implement, flexible and inexpensive. Unlike current all-in-one systems, it enables existing hospital equipment to be easily used and could be used for patients of any age. We demonstrate the utility of the system in infants using visual and noxious (clinically-required heel lance) stimuli as representative examples

    Ants determine their next move at rest: Motor planning and causality in complex systems

    Get PDF
    © 2016 The Authors. To find useful work to do for their colony, individual eusocial animals have to move, somehow staying attentive to relevant social information. Recent research on individual Temnothorax albipennis ants moving inside their colony’s nest found a power-law relationship between a movement’s duration and its average speed; and a universal speed profile for movements showing that they mostly fluctuate around a constant average speed. From this predictability it was inferred that movement durations are somehow determined before the movement itself. Here, we find similar results in lone T. albipennis ants exploring a large arena outside the nest, both when the arena is clean and when it contains chemical information left by previous nest-mates. This implies that these movement characteristics originate from the same individual neural and/or physiological mechanism(s), operating without immediate regard to social influences. However, the presence of pheromones and/or other cues was found to affect the inter-event speed correlations. Hence we suggest that ants’ motor planning results in intermittent response to the social environment: movement duration is adjusted in response to social information only between movements, not during them. This environmentally flexible, intermittently responsive movement behaviour points towards a spatially allocated division of labour in this species. It also prompts more general questions on collective animal movement and the role of intermittent causation from higher to lower organizational levels in the stability of complex systems

    Sensory event-related potential morphology predicts age in premature infants

    Get PDF
    Objective: We investigated whether sensory-evoked cortical potentials could be used to estimate the age of an infant. Such a model could be used to identify infants who deviate from normal neurodevelopment. Methods: Infants aged between 28- and 40-weeks post-menstrual age (PMA) (166 recording sessions in 96 infants) received trains of visual and tactile stimuli. Neurodynamic response functions for each stimulus were derived using principal component analysis and a machine learning model trained and validated to predict infant age. Results: PMA could be predicted accurately from the magnitude of the evoked responses (training set mean absolute error and 95% confidence intervals: 1.41 [1.14; 1.74] weeks, p = 0.0001; test set mean absolute error: 1.55 [1.21; 1.95] weeks, p = 0.0002). Moreover, we show that their predicted age (their brain age) is correlated with a measure known to relate to maturity of the nervous system and is linked to long-term neurodevelopment. Conclusions: Sensory-evoked potentials are predictive of age in premature infants and brain age deviations are related to biologically and clinically meaningful individual differences in nervous system maturation. Significance: This model could be used to detect abnormal development of infants’ response to sensory stimuli in their environment and may be predictive of neurodevelopmental outcome

    Social behaviour and collective motion in plant-animal worms

    Get PDF
    © 2016 The Author(s) Published by the Royal Society. All rights reserved. Social behaviour may enable organisms to occupy ecological niches that would otherwise be unavailable to them. Here, we test this major evolutionary prin- ciple by demonstrating self-organizing social behaviour in the plant-animal, Symsagittifera roscoffensis. These marine aceol flat worms rely for all of their nutrition on the algae within their bodies: hence their common name. We show that individual worms interact with one another to coordinate their movements so that even at low densities they begin to swim in small polarized groups and at increasing densities such flotillas turn into circular mills. We use computer simulations to: (i) determine if real worms interact socially by com- paring them with virtual worms that do not interact and (ii) show that the social phase transitions of the real worms can occur based only on local inter- actions between and among them. We hypothesize that such social behaviour helps the worms to form the dense biofilms or mats observed on certain sun- exposed sandy beaches in the upper intertidal of the East Atlantic and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves. Symsagittifera roscoffensis, a model organ- ism in many other areas in biology (including stem cell regeneration), also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages

    Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhesus macaques are the most widely utilized nonhuman primate model in biomedical research. Previous efforts have validated fewer than 900 single nucleotide polymorphisms (SNPs) in this species, which limits opportunities for genetic studies related to health and disease. Extensive information about SNPs and other genetic variation in rhesus macaques would facilitate valuable genetic analyses, as well as provide markers for genome-wide linkage analysis and the genetic management of captive breeding colonies.</p> <p>Results</p> <p>We used the available rhesus macaque draft genome sequence, new sequence data from unrelated individuals and existing published sequence data to create a genome-wide SNP resource for Indian-origin rhesus monkeys. The original reference animal and two additional Indian-origin individuals were resequenced to low coverage using SOLiDâ„¢ sequencing. We then used three strategies to validate SNPs: comparison of potential SNPs found in the same individual using two different sequencing chemistries, and comparison of potential SNPs in different individuals identified with either the same or different sequencing chemistries. Our approach validated approximately 3 million SNPs distributed across the genome. Preliminary analysis of SNP annotations suggests that a substantial number of these macaque SNPs may have functional effects. More than 700 non-synonymous SNPs were scored by Polyphen-2 as either possibly or probably damaging to protein function and these variants now constitute potential models for studying functional genetic variation relevant to human physiology and disease.</p> <p>Conclusions</p> <p>Resequencing of a small number of animals identified greater than 3 million SNPs. This provides a significant new information resource for rhesus macaques, an important research animal. The data also suggests that overall genetic variation is high in this species. We identified many potentially damaging non-synonymous coding SNPs, providing new opportunities to identify rhesus models for human disease.</p

    Sheep Genome Functional Annotation Reveals Proximal Regulatory Elements Contributed to The Evolution of Modern Breeds

    Get PDF
    Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species
    • …
    corecore