26 research outputs found

    Controlling salt and aroma perception through the inclusion of air fillers

    Get PDF
    Global dietary sodium consumption significantly exceeds the WHO recommended intake levels, although strategies are available for sodium reduction, most are partial product-specific solutions. A wider range of approaches is urgently required to enable food manufacturers to reduce sodium within processed foods. In this study, the addition of air inclusions within hydrogels has been evaluated for its ability to enhance the delivery of sodium and perception of saltiness and was shown, on a volume basis, to achieve an 80% reduction in total sodium with no loss of saltiness perception; the addition of a congruent aroma volatile was shown to enhance overall flavour perception in foamed systems. Air inclusions were shown to increase both the delivery and perception of salt and aroma, in addition to increasing overall flavour perception. This work will be of interest to both academic researchers in this field and industrialists looking for new approaches to mitigate loss of taste quality with sodium reduction

    Back Complaints in the Elders (BACE); design of cohort studies in primary care: an international consortium

    Get PDF
    Background: Although back complaints are common among older people, limited information is available in the literature about the clinical course of back pain in older people and the identification of older persons at risk for the transition from acute back complaints to chronic back pain. The aim of this study is to assess the course of back complaints and identify prognostic factors for the transition from acute back complaints to chronic back complaints in older people who visit a primary health care physician. Methods/design. The design is a prospective cohort study with one-year follow-up. There will be no interference with usual care. Patients older than 55 years who consult a primary health care physician with a new episode of back complaints will be included in this study. Data will be collected using a questionnaire, physical examination and X-ray at baseline, and follow-up questionnaires afte

    Computer simulations suggest direct and stable tip to tip interaction between the outer membrane channel TolC and the isolated docking domain of the multidrug RND efflux transporter AcrB

    No full text
    One way by which bacteria achieve antibiotics resistance is preventing drug access to its target molecule for example through an overproduction of multi-drug efflux pumps of the resistance nodulation division (RND) protein super family of which AcrAB–TolC in Escherichia coli is a prominent example. Although representing one of the best studied efflux systems, the question of how AcrB and TolC interact is still unclear as the available experimental data suggest that either both proteins interact in a tip to tip manner or do not interact at all but are instead connected by a hexamer of AcrA molecules. Addressing the question of TolC–AcrB interaction, we performed a series of 100 ns - 1 µs– molecular dynamics simulations of membrane-embedded TolC in presence of the isolated AcrB docking domain (AcrBDD). In 5/6 simulations we observe direct TolC–AcrBDD interaction that is only stable on the simulated time scale when both proteins engage in a tip to tip manner. At the same time we find TolC opening and closing freely on extracellular side while remaining closed at the inner periplasmic bottleneck region, suggesting that either the simulated time is too short or additional components are required to unlock TolC
    corecore