3 research outputs found
Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines
B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8[superscript +]T-cells, and not CD4[superscript +]T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8[superscript +]T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8[superscript +]T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8[superscript +]T-cells, and decoupling of antigen uptake from B-cell activation.Kathy and Curt Marble Cancer Research Fund (Frontier Research Programme Grant)National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F32CA180586
Reward magnitude tracking by neural populations in ventral striatum
Evaluation of the magnitudes of intrinsically rewarding stimuli is essential for assigning value and guiding behavior. By combining parametric manipulation of a primary reward, medial forebrain bundle (MFB) microstimulation, with functional magnetic imaging (fMRI) in rodents, we delineated a broad network of structures activated by behaviorally characterized levels of rewarding stimulation. Correlation of psychometric behavioral measurements with fMRI response magnitudes revealed regions whose activity corresponded closely to the subjective magnitude of rewards. The largest and most reliable focus of reward magnitude tracking was observed in the shell region of the nucleus accumbens (NAc). Although the nonlinear nature of neurovascular coupling complicates interpretation of fMRI findings in precise neurophysiological terms, reward magnitude tracking was not observed in vascular compartments and could not be explained by saturation of region-specific hemodynamic responses. In addition, local pharmacological inactivation of NAc changed the profile of animals’ responses to rewards of different magnitudes without altering mean reward response rates, further supporting a hypothesis that neural population activity in this region contributes to assessment of reward magnitudes.United States. Defense Advanced Research Projects Agency (Grant W911NF-10-0059)National Institutes of Health (U.S.) (Grant R01-DA028299)National Institutes of Health (U.S.) (Grant R01-DA038642