195 research outputs found
Effects of Space Flight on Rodent Tissues
As the inevitable expression of mankind's search for knowledge continues into space, the potential acute and long-term effects of space flight on human health must be fully appreciated. Despite its critical role relatively little is known regarding the effects of the space environment on the ocular system. Our proposed studies were aimed at determining whether or not space flight causes discernible disruption of the genomic integrity, cell kinetics, cytoarchitecture and other cytological parameters in the eye. Because of its defined and singular biology our main focus was on the lens and possible changes associated with its primary pathology, cataract. We also hoped to explore the possible effect of space flight on the preferred orientation of dividing cells in the perilimbal region of conjunctiva and cornea
Regulation of Gonadotropin Secretion in the Male: Effect of an Aromatization Inhibitor in Estradiol-implanted, Orchidectomized Dogs
Testosterone is aromatized to estradiol in both peripheral tissues and the central nervous system. Various authors have suggested that this conversion in the male may be prerequisite for the regulation of gonadotropin secretion by testosterone. Previously, it was reported that inhibition of central nervous system aromatase caused a significant increase in plasma LH in the presence of physiologic testosterone levels (Winter et a!, 1983). In order to confirm whether aminoglutethimide, the aromatase inhibitor used in our previous study, either blocked aromatization, or the action of estradiol, the following study was conducted. Fifteen male mongrel dogs were equally divided into three groups. Group 1 dogs were implanted with estradiol-filled polydimethylsiloxane capsules only; Group 2 dogs were implanted with empty capsules and treated with 60 mg b.i.d. of aminoglutethimide; and Group 3 dogs were implanted with polydimethylsiloxane capsules filled with estradiol and treated with aminoglutethimide. Blood samples were drawn for 24 days during pretreatment, capsule implantation, castration, aminoglutethimide administration and capsule removal periods. The postcastration response of both plasma LH and FSH in dogs in groups I and 3 was suppressed in the presence of elevated estradiol, whereas that of Group 2 dogs was normal in the absence of estradiol. The results suggest that aminoglutethimide neither directly affects the plasma concentration of either LH or FSH nor blocks the effect of estradiol in inhibiting their release following castration. These data, taken together with our previous work, implicate aromatization of testosterone to estradiol in the control of gonadotropin secretion in the male
Loss of p53 Ser18 and Atm Results in Embryonic Lethality without Cooperation in Tumorigenesis
Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53S18A mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm−/− animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53S18A and Atm−/− animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm−/− animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination
- …