9 research outputs found

    A Hybrid Genetic Algorithm for Integrated Truck Scheduling and Product Routing on the Cross-Docking System with Multiple Receiving and Shipping Docks

    No full text
    In this research, a truck scheduling problem for a cross-docking system with multiple receiving and shipping docks is studied. Until recently, single-dock cross-docking problems are studied mostly. This research is focused on the multiple-dock problems. The objective of the problem is to determine the best docking sequences of inbound and outbound trucks to the receiving and shipping docks, respectively, which minimize the maximal completion time. We propose a new hybrid genetic algorithm to solve this problem. This genetic algorithm improves the solution quality through the population scheme of the nested structure and the new product routing heuristic. To avoid unnecessary infeasible solutions, a linked-chromosome representation is used to link the inbound and outbound truck sequences, and locus-pairing crossovers and mutations for this representation are proposed. As a result of the evaluation of the benchmark problems, it shows that the proposed hybrid GA provides a superior solution compared to the existing heuristics

    Storm Sudden Commencements Without Interplanetary Shocks

    No full text
    Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism – Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than –30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs

    Aerobic Exercise Training Inhibits Neointimal Formation via Reduction of PCSK9 and LOX-1 in Atherosclerosis

    No full text
    The purpose of this study was to investigate whether aerobic exercise training inhibits atherosclerosis via the reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9) expression in balloon-induced common carotid arteries of a high-fat-diet rats. Male SD (Sprague Dawley) rats fed an eight-weeks high-fat diet were randomly divided into three groups; these were the sham-operated control (SC), the balloon-induced control (BIC) and the balloon-induced exercise (BIE). The aerobic exercise training groups were performed on a treadmill. The major findings were as follows: first, body weight gain was significantly decreased by aerobic exercise training compared to the BIC without change of energy intake. Second, neointimal formation was significantly inhibited by aerobic exercise training in the balloon-induced common carotid arteries of high-fat-diet rats compared to the BIC. Third, low-density lipoprotein (LDL) receptor (LDLr) expression was significantly increased by aerobic exercise training in the livers of the high-fat diet group compared to the BIC, but not the proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. Fourth, aerobic exercise training significantly decreased the expression of PCSK9, the lectin-like oxidized LDL receptor-1 (LOX-1), and vascular cell adhesion molecule-1 (VCAM-1) in balloon-induced common carotid arteries of high-fat-diet rats compared to the BIC. In conclusion, our results suggest that aerobic exercise training increases LDLr in the liver and inhibits neointimal formation via the reduction of PCSK9 and LOX-1 in balloon-induced common carotid arteries of high-fat-diet-induced rats

    A Novel Therapeutic Reagent, KA-1002 for Alleviating Lysophosphatidic Acid-Mediated Inflammation Related Gene Expression in Swine Macrophages

    No full text
    Stresses and various infectious reagents caused multiple inflammatory diseases in swine in a livestock industrial environment. Therefore, there is a need for an effective therapeutic or preventive agent that could alleviate chronic and acute inflammation. We found that lysophosphatidic acid (LPA), a stress-induced potent endogenous inflammatory molecule, causes a broad range-regulation of inflammation related genes inflammation in swine macrophages. We further investigated the genome scaled transcriptional regulatory effect of a novel LPA-signaling antagonist, KA-1002 on swine macrophages, inducing the alleviated LPA-mediated inflammation related gene expression. Therefore, KA-1002 could potentially serve as a novel therapeutic or preventive agent to maintain physiologically healthy and balanced conditions of pigs

    Operational Dst index prediction model based on combination of artificial neural network and empirical model

    No full text
    In this paper, an operational Dst index prediction model is developed by combining empirical and Artificial Neural Network (ANN) models. ANN algorithms are widely used to predict space weather conditions. While they require a large amount of data for machine learning, large-scale geomagnetic storms have not occurred sufficiently for the last 20 years, Advanced Composition Explorer (ACE) and Deep Space Climate Observatory (DSCOVR) mission operation period. Conversely, the empirical models are based on numerical equations derived from human intuition and are therefore applicable to extrapolate for large storms. In this study, we distinguish between Coronal Mass Ejection (CME) driven and Corotating Interaction Region (CIR) driven storms, estimate the minimum Dst values, and derive an equation for describing the recovery phase. The combined Korea Astronomy and Space Science Institute (KASI) Dst Prediction (KDP) model achieved better performance contrasted to ANN model only. This model could be used practically for space weather operation by extending prediction time to 24 h and updating the model output every hour

    Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine

    No full text
    Quantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications. Silica-coating is one of the most effective methods for overcoming the disadvantages of QDs, owing to silica’s physicochemical stability, nontoxicity, and excellent bioavailability. This review highlights recent progress in the design, preparation, and application of silica-coated QDs and presents an overview of the major challenges and prospects of their application

    Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes

    No full text
    Quantum dots (QDs) have outstanding optical properties such as strong fluorescence, excellent photostability, broad absorption spectra, and narrow emission bands, which make them useful for bioimaging. However, cadmium (Cd)-based QDs, which have been widely studied, have potential toxicity problems. Cd-free QDs have also been studied, but their weak photoluminescence (PL) intensity makes their practical use in bioimaging challenging. In this study, Cd-free QD nanoprobes for bioimaging were fabricated by densely embedding multiple indium phosphide/zinc sulfide (InP/ZnS) QDs onto silica templates and coating them with a silica shell. The fabricated silica-coated InP/ZnS QD-embedded silica nanoparticles (SiO2@InP QDs@SiO2 NPs) exhibited hydrophilic properties because of the surface silica shell. The quantum yield (QY), maximum emission peak wavelength, and full-width half-maximum (FWHM) of the final fabricated SiO2@InP QDs@SiO2 NPs were 6.61%, 527.01 nm, and 44.62 nm, respectively. Moreover, the brightness of the particles could be easily controlled by adjusting the amount of InP/ZnS QDs in the SiO2@InP QDs@SiO2 NPs. When SiO2@InP QDs@SiO2 NPs were administered to tumor syngeneic mice, the fluorescence signal was prominently detected in the tumor because of the preferential distribution of the SiO2@InP QDs@SiO2 NPs, demonstrating their applicability in bioimaging with NPs. Thus, SiO2@InP QDs@SiO2 NPs have the potential to successfully replace Cd-based QDs as highly bright and biocompatible fluorescent nanoprobes

    Silver-Assembled Silica Nanoparticles in Lateral Flow Immunoassay for Visual Inspection of Prostate-Specific Antigen

    No full text
    Prostate-specific antigen (PSA) is the best-known biomarker for early diagnosis of prostate cancer. For prostate cancer in particular, the threshold level of PSA <4.0 ng/mL in clinical samples is an important indicator. Quick and easy visual detection of the PSA level greatly helps in early detection and treatment of prostate cancer and reducing mortality. In this study, we developed optimized silica-coated silver-assembled silica nanoparticles (SiO2@Ag@SiO2 NPs) that were applied to a visual lateral flow immunoassay (LFIA) platform for PSA detection. During synthesis, the ratio of silica NPs to silver nitrate changed, and as the synthesized NPs exhibited distinct UV spectra and colors, most optimized SiO2@Ag@SiO2 NPs showed the potential for early prostate cancer diagnosis. The PSA detection limit of our LFIA platform was 1.1 ng/mL. By applying each SiO2@Ag@SiO2 NP to the visual LFIA platform, optimized SiO2@Ag@SiO2 NPs were selected in the test strip, and clinical samples from prostate cancer patients were successfully detected as the boundaries of non-specific binding were clearly seen and the level of PSA was <4 ng/mL, thus providing an avenue for quick prostate cancer diagnosis and early treatment
    corecore