31 research outputs found

    One-directional flow of ionic solutions along fine electrodes under an alternating current electric field

    Get PDF
    Electric fields are widely used for controlling liquids in various research fields. To control a liquid, an alternating current (AC) electric field can offer unique advantages over a direct current (DC) electric field, such as fast and programmable flows and reduced side effects, namely the generation of gas bubbles. Here, we demonstrate one-directional flow along carbon nanotube nanowires under an AC electric field, with no additional equipment or frequency matching. This phenomenon has the following characteristics: First, the flow rates of the transported liquid were changed by altering the frequency showing Gaussian behaviour. Second, a particular frequency generated maximum liquid flow. Third, flow rates with an AC electric field (approximately nanolitre per minute) were much faster than those of a DC electric field (approximately picolitre per minute). Fourth, the flow rates could be controlled by changing the applied voltage, frequency, ion concentration of the solution and offset voltage. Our finding of microfluidic control using an AC electric field could provide a new method for controlling liquids in various research fields

    TRACER: Extreme Attention Guided Salient Object Tracing Network (Student Abstract)

    No full text
    Existing studies on salient object detection (SOD) focus on extracting distinct objects with edge features and aggregating multi-level features to improve SOD performance. However, both performance gain and computational efficiency cannot be achieved, which has motivated us to study the inefficiencies in existing encoder-decoder structures to avoid this trade-off. We propose TRACER which excludes multi-decoder structures and minimizes the learning parameters usage by employing attention guided tracing modules (ATMs), as shown in Fig. 1

    Development of a Spherical Positioning Robot and Neuro-Navigation System for Precise and Repetitive Non-Invasive Brain Stimulation

    No full text
    Although non-invasive brain stimulation techniques do not involve surgical procedures, the challenge remains in correctly locating the stimulator from outside the head. There is a limit to which one can manually and precisely position and orient the stimulator or repeatedly move the stimulator around the same position. Therefore, in this study, we developed a serial robot with 6 degrees-of-freedom to move the stimulator and a neuro-navigation system to determine the stimulus point from looking at the shape of the subject’s brain. The proposed robot applied a spherical mechanism while considering the safety of the subject, and the workspace of the robot was designed considering the shape of the human head. Position-based visual servoing was applied to compensate for unexpected movements during subject stimulation. We also developed a neuro-navigation system that allows us visually to check the focus of the stimulator and the human brain at the same time and command the robot to the desired point. To verify the system performance, we first performed repeatability and motion compensation experiments of the robot and then evaluated the repeated biosignal response experiments through transcranial magnetic stimulation, a representative technique of non-invasive brain stimulation

    Introduction of Infection Prevention Tracheal Intubation Protocol during the COVID-19 Pandemic Is Not Associated with First-Pass Success Rates of Endotracheal Intubation in the Emergency Department: A Before-and-After Comparative Study

    No full text
    Aerosols and droplets have put healthcare workers performing airway management at high risk of contracting coronavirus disease 2019 (COVID-19). Experts have developed endotracheal intubation (ETI) guidelines and protocols to protect intubators from infection. We aimed to determine whether changes in the emergency department (ED) intubation protocol to prevent COVID-19 infection were associated with first-pass success (FPS) rates in ETI. We used data from the airway management registries in two academic EDs. The study was divided into pre-pandemic (January 2018 to January 2020) and pandemic (February 2020 to February 2022) periods. We selected 2476 intubation cases, including 1151 and 1325 cases recorded before and during the pandemic, respectively. During the pandemic, the FPS rate was 92.2%, which did not change significantly, and major complications increased slightly but not significantly compared with the pre-pandemic period. The OR for the FPS of applying infection prevention intubation protocols was 0.72 (p = 0.069) in a subgroup analysis, junior emergency physicians (PGY1 residents) had an FPS of less than 80% regardless of pandemic protocol implementation. The FPS rate of senior emergency physicians in physiologically difficult airways decreased significantly during the pandemic (98.0% to 88.5%). In conclusion, the FPS rate and complications for adult ETI performed by emergency physicians using COVID-19 infection prevention intubation protocols were similar to pre-pandemic conditions
    corecore