6 research outputs found
The HEV Ventilator
HEV is a low-cost, versatile, high-quality ventilator, which has been
designed in response to the COVID-19 pandemic. The ventilator is intended to be
used both in and out of hospital intensive care units, and for both invasive
and non-invasive ventilation. The hardware can be complemented with an external
turbine for use in regions where compressed air supplies are not reliably
available. The standard modes provided include PC-A/C(Pressure Assist
Control),PC-A/C-PRVC(Pressure Regulated Volume Control), PC-PSV (Pressure
Support Ventilation) and CPAP (Continuous Positive airway pressure). HEV is
designed to support remote training and post market surveillance via a web
interface and data logging to complement the standard touch screen operation,
making it suitable for a wide range of geographical deployment. The HEV design
places emphasis on the quality of the pressure curves and the reactivity of the
trigger, delivering a global performance which will be applicable to ventilator
needs beyond theCOVID-19 pandemic. This article describes the conceptual design
and presents the prototype units together with their performance evaluation.Comment: 34 pages, 18 figures, Extended version of the article submitted to
PNA
The HEV Ventilator
HEV is a low-cost, versatile, high-quality ventilator, which has been designed in response to the COVID-19 pandemic. The ventilator is intended to be used both in and out of hospital intensive care units, and for both invasive and non-invasive ventilation. The hard-ware can be complemented with an external turbine for use in regions where compressed air supplies are not reliably available. The standard modes provided include PCâA/C (Pressure Assist Control), PCâA/CâPRVC (Pressure Regulated Volume Control), PC-PSV (Pressure Support Ventilation) and CPAP (Continuous Positive Airway Pressure). HEV is designed to support remote training and post market surveillance via a web interface and data logging to complement the standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the quality of the pressure curves and the reactivity of the trigger,delivering a global performance which will be applicable to ventilator needs beyond the COVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with their performance evaluation
The HEV Ventilator: at the interface between particle physics and biomedical engineering.
A high-quality, low-cost ventilator, dubbed HEV, has been developed by the particle physics community working together with biomedical engineers and physicians around the world. The HEV design is suitable for use both in and out of hospital intensive care units, provides a variety of modes and is capable of supporting spontaneous breathing and supplying oxygen-enriched air. An external air supply can be combined with the unit for use in situations where compressed air is not readily available. HEV supports remote training and post market surveillance via a Web interface and data logging to complement standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the ventilation performance, especially the quality and accuracy of the pressure curves, reactivity of the trigger, measurement of delivered volume and control of oxygen mixing, delivering a global performance which will be applicable to ventilator needs beyond the COVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with a performance evaluation