9 research outputs found

    Anterior cingulate activation and error processing during interferon-alpha treatment

    No full text
    BACKGROUND: There has been increasing interest in the role of immunologic processes, notably cytokines, in the development of behavioral alterations, especially in medically ill patients. Interferon (IFN)-alpha is notorious for causing behavioral symptoms, including depression, fatigue, and cognitive dysfunction, and has been used to investigate the effects of cytokines on the brain. METHODS: In the present study we assessed the effects of low-dose IFN-alpha on brain activity, using functional magnetic resonance imaging during a task of visuospatial attention in patients infected with hepatitis C virus (HCV). RESULTS: Despite endorsing symptoms of impaired concentration and fatigue, IFN-alpha-treated patients (n = 10) exhibited task performance and activation of parietal and occipital brain regions similar to that seen in HCV-infected control subjects (n = 11). Interestingly, however, in contrast to control subjects, IFN-alpha-treated patients exhibited significant activation in the dorsal part of the anterior cingulate cortex (ACC), which highly correlated with the number of task-related errors. No such correlation was found in control subjects. CONCLUSIONS: Consistent with the role of the ACC in conflict monitoring, ACC activation during IFN-alpha administration suggests that cytokines might increase processing conflict or reduce the threshold for conflict detection, thereby signaling the need to exert greater mental effort to maintain performance. Such alterations in ACC activity might in turn contribute to cytokine-induced behavioral changes

    Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression

    No full text
    BACKGROUND: Interferon (IFN)-alpha has been used to study the effects of innate immune cytokines on the brain and behavior in humans. The degree to which peripheral administration of IFN-alpha accesses the brain and is associated with a central nervous system (CNS) inflammatory response is unknown. Moreover, the relationship among IFN-alpha-associated CNS inflammatory responses, neurotransmitter metabolism, and behavior has yet to be established. METHODS: Twenty-four patients with hepatitis C underwent lumbar puncture and blood sampling after approximately 12 weeks of either no treatment (n = 12) or treatment with pegylated IFN-alpha 2b (n = 12). Cerebrospinal fluid (CSF) and blood samples were analyzed for proinflammatory cytokines and their receptors as well as the chemokine, monocyte chemoattractant protein-1 (MCP-1), and IFN-alpha. Cerebrospinal fluid samples were additionally analyzed for monoamine metabolites and corticotropin releasing hormone. Depressive symptoms were assessed using the Montgomery Asberg Depression Rating Scale. RESULTS: Interferon-alpha was detected in the CSF of all IFN-alpha-treated patients and only one control subject. Despite no increases in plasma IL-6, IFN-alpha-treated patients exhibited significant elevations in CSF IL-6 and MCP-1, both of which were highly correlated with CSF IFN-alpha concentrations. Of the immunologic and neurotransmitter variables, log-transformed CSF concentrations of the serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were the strongest predictor of depressive symptoms. Log-transformed CSF concentrations of IL-6, but not IFN-alpha or MCP-1, were negatively correlated with log-transformed CSF 5-HIAA (r(2) = -.25, p < .05). CONCLUSIONS: These data indicate that a peripherally administered cytokine can activate a CNS inflammatory response in humans that interacts with monoamine (serotonin) metabolism, which is associated with depression

    Basal Ganglia Hypermetabolism and Symptoms of Fatigue during Interferon-alpha Therapy

    No full text
    Interferon (IFN)-alpha is a cytokine of the innate immune response that is well known for inducing behavioral alterations and has been used to study effects of cytokines on the nervous system. Limited data, however, are available on the sites of action of IFN-alpha within the brain and their relationship with specific IFN-alpha-induced symptoms. Using a longitudinal design, whole-brain metabolic activity as assessed by fluorine-18-labeled fluorodeoxyglucose uptake and positron emission tomography was examined before and 4 weeks after IFN-alpha administration in patients with malignant melanoma. Changes in metabolic activity in relevant brain regions were then correlated with IFN-alpha-induced behavioral changes. IFN-alpha administration was associated with widespread bilateral increases in glucose metabolism in subcortical regions including the basal ganglia and cerebellum. Decreases in dorsal prefrontal cortex glucose metabolism were also observed. Prominent IFN-alpha-induced behavioral changes included lassitude, inability to feel, and fatigue. Correlational analyses revealed that self-reported fatigue (specifically as assessed by the 'energy' subscale of the Visual Analog Scale of Fatigue) was associated with increased glucose metabolism in the left nucleus accumbens and putamen. These data indicate that IFN-alpha as well as other cytokines of the innate immune response may target basal ganglia nuclei, thereby contributing to fatigue-related symptoms in medically ill patients

    Neurobehavioral Effects of Interferon-α in Patients with Hepatitis-C: Symptom Dimensions and Responsiveness to Paroxetine

    No full text
    In patients at high risk for recurrence of malignant melanoma, interferon-α (IFN-α), a stimulator of innate immunity, appears to induce distinct neurobehavioral symptom dimensions: a mood and anxiety syndrome, and a neurovegetative syndrome, of which the former is responsive to prophylactic administration of paroxetine. We sought to determine whether symptom dimensions (and treatment responsiveness) arise in patients with hepatitis C administered IFN-α and ribavirin. In a randomized, double-blind, 6-month study, 61 patients with hepatitis C eligible for therapy with IFN-α and ribavirin received the antidepressant paroxetine (n=28) or a placebo (n=33). Study medication began 2 weeks before IFN-α/ribavirin therapy. Neuropsychiatric assessments included the 10-item Montgomery–Asberg Depression Rating Scale (MADRS). The items of the MADRS were grouped into depression, anxiety, cognitive dysfunction, and neurovegetative symptom dimensions, and analyzed using a mixed model. By 2 weeks of IFN-α/ribavirin therapy, all four dimensions increased, with the symptom dimensions of anxiety and cognitive dysfunction fluctuating and worsening, respectively, in both groups over time. The depression symptom dimension was significantly lower in the paroxetine treatment group (p=0.04); severity of the neurovegetative symptom dimension was similar in both groups. Similar to patients with malignant melanoma receiving high-dose IFN-α, the depression symptom dimension is more responsive to paroxetine treatment in individuals undergoing concomitant IFN-α/ribavirin therapy. However, the anxiety, cognitive dysfunction, and neurovegetative symptom dimensions appear less responsive to prophylactic paroxetine administration. Different neurobiologic pathways may contribute to the responsiveness of IFN-α-induced symptom dimensions to antidepressant treatment, requiring relevant psychopharmacologic strategies

    Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons

    No full text
    An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD

    Brain microglia in psychiatric disorders

    No full text
    Summary The role of immune activation in psychiatric disorders has attracted considerable attention over the past two decades, contributing to the rise of a new era for psychiatry. Microglia, the macrophages of the brain, are progressively becoming the main focus of the research in this field. In this Review, we assess the literature on microglia activation across different psychiatric disorders, including post-mortem and in-vivo studies in humans and experimental studies in animals. Although microglia activation has been noted in all types of psychiatric disorder, no association was seen with specific diagnostic categories. Furthermore, the findings from these studies highlight that not all psychiatric patients have microglial activation. Therefore, the cause of the neuroinflammation in these cohorts and its implications are unclear. We discuss psychosocial stress as one of the main factors determining microglial activation in patients with psychiatric disorders, and explore the relevance of these findings for future treatment strategies
    corecore