1,027 research outputs found
Medic Rag
Yellow title at top with a skull and two people in the center of the pagehttps://scholarsjunction.msstate.edu/cht-sheet-music/13962/thumbnail.jp
Physical Dissipation and the Method of Controlled Lagrangians
We describe the effect of physical dissipation on stability of
equilibria which have been stabilized, in the absence of damping,
using the method of controlled Lagrangians. This method
applies to a class of underactuated mechanical systems including
âbalanceâ systems such as the pendulum on a cart. Since
the method involves modifying a systemâs kinetic energy metric
through feedback, the effect of dissipation is obscured.
In particular, it is not generally true that damping makes a
feedback-stabilized equilibrium asymptotically stable. Damping
in the unactuated directions does tend to enhance stability,
however damping in the controlled directions must be âreversedâ
through feedback. In this paper, we suggest a choice
of feedback dissipation to locally exponentially stabilize a class
of controlled Lagrangian systems
Dissipation and Controlled Euler-Poincaré Systems
The method of controlled Lagrangians is a technique for stabilizing underactuated mechanical systems which involves modifying a systemâs energy and dynamic structure through feedback. These modifications can obscure the effect of physical dissipation in the closed-loop. For example,
generic damping can destabilize an equilibrium which is closed-loop stable for a conservative system model. In this paper, we consider the effect of damping on Euler-Poincaré (special reduced Lagrangian) systems which have been stabilized about an equilibrium using the method of controlled Lagrangians. We describe a choice of feed-back dissipation which asymptotically stabilizes a sub-class of controlled Euler-Poincaré systems subject to physical damping. As an example, we consider intermediate axis rotation of a damped rigid body with a single internal rotor
Time dependence in perpendicular media with a soft underlayer
In this paper we describe measurements of magnetic viscosity or time dependence in magnetic thin films suitable for use as perpendicular recording media. Generally, such effects cannot be measured using conventional magnetometry techniques due to the presence of a thin (0.1 mum) soft underlayer (SUL) in the media necessary to focus the head field. To achieve our results we have developed an ultrastable MOKE magnetometer, the construction of which is described. This has enabled us to measure nominally identical films with and without the presence of the SUL. We find that the presence of the SUL narrows the energy barrier distribution in the perpendicular film increasing the nucleation field (H-n), reducing the coercivity (H-c) and results in an increase in the squareness of the loop. This in turn results in an increase in the magnitude of the viscosity in the region of the H-c but that the range of fields over which the viscosity occurs is reduced
The effect of grading the atomic number at resistive guide element interface on magnetic collimation
Using 3 dimensional numerical simulations, this paper shows that grading the atomic number and thus the resistivity at the interface between an embedded high atomic number guide element and a lower atomic number substrate enhances the growth of a resistive magnetic field. This can lead to a large integrated magnetic flux density, which is fundamental to confining higher energy fast electrons. This results in significant improvements in both magnetic collimation and fast-electron-temperature uniformity across the guiding. The graded interface target provides a method for resistive guiding that is tolerant to laser pointing
Proton radiography in background magnetic fields
Proton radiography has proved increasingly successful as a diagnostic for electric and magnetic fields in high-energy-density physics experiments. Most experiments use target-normal sheath acceleration sources with a wide energy range in the proton beam, since the velocity spread can help differentiate between electric and magnetic fields and provide time histories in a single shot. However, in magnetized plasma experiments with strong background fields, the broadband proton spectrum leads to velocity-spread-dependent displacement of the beam and significant blurring of the radiograph. We describe the origins of this blurring and show how it can be removed from experimental measurements, and we outline the conditions under which such deconvolutions are successful. As an example, we apply this method to a magnetized plasma experiment that used a background magnetic field of 3 T and in which the strong displacement and energy spread of the proton beam reduced the spatial resolution from tens of micrometers to a few millimeters. Application of the deconvolution procedure accurately recovers radiographs with resolutions better than 100 ”m, enabling the recovery of more accurate estimates of the path-integrated magnetic field. This work extends accurate proton radiography to a class of experiments with significant background magnetic fields, particularly those experiments with an applied external magnetic field
Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR
9 figures, 6 tables and 17 pages. This paper is part of the LOFAR surveys data release 1 and has been accepted for publication in a special edition of A&A that will appear in Feb 2019, volume 622. The catalogues and images from the data release will be publicly available on lofar-surveys.org upon publication of the journal. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density () at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio maps using the Condon relation. We compared these maps with hybrid maps from a combination of GALEX far-ultraviolet and Spitzer 24 data using plots tracing the relation at -kpc resolution. The RC emission is smoothed with respect to the hybrid owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation , where (140 MHz) and (1365 MHz). Both relations have a scatter of . If we restrict ourselves to areas of young CREs (; ), the relation becomes almost linear at both frequencies with and a reduced scatter of . We then simulate the effect of CRE transport by convolving the hybrid maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are -5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of - at 1 GeV. A RC-SFR relation at GHz can be exploited to measure SFRs at redshift using MHz observations.Peer reviewe
- âŠ