35 research outputs found
Clusterin (APOJ) in Alzheimer’s Disease: An Old Molecule with a New Role
Clusterin (CLU), initially identified in 1983 as a “clustering factor” in ram rete testis fluid, is a multifaceted protein that was re-discovered and subsequently renamed eight times from 1983 to 1992. CLU exists as multiple protein isoforms including the 80 kDa glycosylated mature/secreted form of CLU (mCLU) and the smaller non-modified nuclear and intracellular forms of CLU (nCLU and icCLU, respectively). These isoforms, which are expressed at the highest levels in the brain, are suggested to play distinct roles in various disease processes such as those involving inflammation and apoptosis. Currently, CLU, also known as apolipoprotein J (APOJ) which belongs to the same protein family as apolipoprotein E (APOE), is the third most significant genetic risk factor for the development of late-onset Alzheimer’s disease (LOAD); however, an extensive gap exists in the literature in understanding the physiological roles of CLU in normal brain and the pathogenic mechanisms conferred by CLU polymorphisms in the onset of LOAD. In this chapter, we discuss the status of the current knowledge regarding the generation and regulation of CLU protein isoforms, the clinical evidence and possible mechanisms involved in LOAD, and provide our perspectives for future studies
Estrogen receptor β in Alzheimer's disease: from mechanisms to therapeutics
Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for AD has been largely associated with the loss of ovarian sex hormones during menopause. This review examines current understanding of the role of estrogen receptor β (ERβ) in the regulation of neurological health and its implication in the development and intervention of AD. Since its discovery in 1996, research conducted over the last 15-20 years has documented a great deal of evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from development to aging. ERβ genetic polymorphisms have been associated with cognitive impairment and increased risk for AD predominantly in women. The role of ERβ in the intervention of AD has been demonstrated by the alteration of AD pathology in response to treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and tangle histopathological presentations as well as learning and memory deficits. Future studies that explore the potential interactions between ERβ signaling and the genetic isoforms of human apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically needed. The current trend of lost-in-translation in AD drug development that has primarily been based on early-onset familial AD (FAD) models underscores the urgent need for novel models that recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD representing more than 95% of the current human AD population. Combining the use of FAD-related models that generally have excellent face validity with SAD-related models that hold more reliable construct validity would together increase the predictive validity of preclinical findings for successful translation into humans
Nuclear-receptor–mediated regulation of drug– and bile-acid–transporter proteins in gut and liver
This is an Accepted Manuscript of an article published by Taylor & Francis in Drug Metabolism Reviews on 2015 Sep 2, available online: http://www.tandfonline.com/10.3109/03602532.2012.748793.Adverse drug events (ADEs) are a common cause of patient morbidity and mortality and are classically thought to result, in part, from variation in expression and activity of hepatic enzymes of drug metabolism. It is now known that alterations in the expression of genes that encode drug- and bile-acid–transporter proteins in both the gut and liver play a previously unrecognized role in determining patient drug response and eventual clinical outcome. Four nuclear receptor (NR) superfamily members, including pregnane X receptor (PXR, NR1I2), constitutive androstane receptor (NR1I3), farnesoid X receptor (NR1H4), and vitamin D receptor (NR1I1), play pivotal roles in drug- and bile-acid– activated programs of gene expression to coordinately regulate drug- and bile-acid transport activity in the intestine and liver. This review focuses on the NR-mediated gene activation of drug and bile-acid transporters in these tissues as well as the possible underlying molecular mechanisms
Human ApoE ε2 promotes regulatory mechanisms of bioenergetic and synaptic function in female brain: a focus on V-type H+-ATPase
Humans possess three major isoforms of the apolipoprotein E (ApoE) gene encoded by three alleles: ApoE ε2 (ApoE2), ApoE ε3 (ApoE3), and ApoE ε4 (ApoE4). It is established that the three ApoE isoforms confer differential susceptibility to Alzheimer’s disease (AD); however, an in-depth molecular understanding of the underlying mechanisms is currently unavailable. In this study, we examined the cortical proteome differences among the three ApoE isoforms using 6-month-old female, human ApoE2, ApoE3, and ApoE4 gene-targeted replacement mice and two-dimensional proteomic analyses. The results reveal that the three ApoE brains differ primarily in two areas: cellular bioenergetics and synaptic transmission. Of particular significance, we show for the first time that the three ApoE brains differentially express a key component of the catalytic domain of the V-type H+-ATPase (Atp6v), a proton pump that mediates the concentration of neurotransmitters into synaptic vesicles and thus is crucial in synaptic transmission. Specifically, our data demonstrate that ApoE2 brain exhibits significantly higher levels of the B subunit of Atp6v (Atp6v1B2) when compared to both ApoE3 and ApoE4 brains, with ApoE4 brain exhibiting the lowest expression. Our additional analyses show that Atp6v1B2 is significantly impacted by aging and AD pathology and the data suggest that Atp6v1B2 deficiency could play a role in the progressive loss of synaptic integrity during early development of AD. Collectively, our findings indicate that human ApoE isoforms differentially modulate regulatory mechanisms of bioenergetic and synaptic function in female brain. A more efficient and robust status in both areas could serve as a potential mechanism contributing to the neuroprotective and cognition-favoring properties associated with the ApoE2 genotype
Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV
We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) =
200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity
(-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these
kinematics and as a function of collision centrality (related to impact
parameter for the R_dAu collision). We find that the modification is largest
for collisions with small impact parameters, and observe a suppression
(R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we
observe a suppression for p_T1) for p_T>2
GeV/c. The observed enhancement at negative rapidity has implications for the
observed modification in heavy-ion collisions at high p_T.Comment: 384 authors, 24 pages, 19 figures, 13 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg123_data.htm
Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV
We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) =
200 GeV recorded by the PHENIX experiment and compare with yields in p+p
collisions at the same energy per nucleon-nucleon collision. The measurements
cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high
statistical precision and are compared with two theoretical models: one with
nuclear shadowing combined with final state breakup and one with coherent gluon
saturation effects. To remove model dependent systematic uncertainties we also
compare the data to a simple geometric model. We find that calculations where
the nuclear modification is linear or exponential in the density weighted
longitudinal thickness are difficult to reconcile with the forward rapidity
data.Comment: 449 authors from 66 institutions, 6 pages, 3 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
COMAP Early Science: III. CO Data Processing
We describe the first season COMAP analysis pipeline that converts raw
detector readouts to calibrated sky maps. This pipeline implements four main
steps: gain calibration, filtering, data selection, and map-making. Absolute
gain calibration relies on a combination of instrumental and astrophysical
sources, while relative gain calibration exploits real-time total-power
variations. High efficiency filtering is achieved through spectroscopic
common-mode rejection within and across receivers, resulting in nearly
uncorrelated white noise within single-frequency channels. Consequently,
near-optimal but biased maps are produced by binning the filtered time stream
into pixelized maps; the corresponding signal bias transfer function is
estimated through simulations. Data selection is performed automatically
through a series of goodness-of-fit statistics, including and
multi-scale correlation tests. Applying this pipeline to the first-season COMAP
data, we produce a dataset with very low levels of correlated noise. We find
that one of our two scanning strategies (the Lissajous type) is sensitive to
residual instrumental systematics. As a result, we no longer use this type of
scan and exclude data taken this way from our Season 1 power spectrum
estimates. We perform a careful analysis of our data processing and observing
efficiencies and take account of planned improvements to estimate our future
performance. Power spectrum results derived from the first-season COMAP maps
are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap
COMAP Early Science: IV. Power Spectrum Methodology and Results
We present the power spectrum methodology used for the first-season COMAP
analysis, and assess the quality of the current data set. The main results are
derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a
robust estimator with respect to both noise modeling errors and experimental
systematics. We use effective transfer functions to take into account the
effects of instrumental beam smoothing and various filter operations applied
during the low-level data processing. The power spectra estimated in this way
have allowed us to identify a systematic error associated with one of our two
scanning strategies, believed to be due to residual ground or atmospheric
contamination. We omit these data from our analysis and no longer use this
scanning technique for observations. We present the power spectra from our
first season of observing and demonstrate that the uncertainties are
integrating as expected for uncorrelated noise, with any residual systematics
suppressed to a level below the noise. Using the FPXS method, and combining
data on scales we estimate , the first direct 3D
constraint on the clustering component of the CO(1-0) power spectrum in the
literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap
Measurement of direct photon production in p + p collisions at sqrt(s) = 200 GeV
Cross sections for mid-rapidity production of direct photons in p+p
collisions at the Relativistic Heavy Ion Collider (RHIC) are reported for 3 <
p_T < 16 GeV/c. Next-to-leading order (NLO) perturbative QCD (pQCD) describes
the data well for p_T > 5 GeV/c, where the uncertainties of the measurement and
theory are comparable. We also report on the effect of requiring the photons to
be isolated from parton jet energy. The observed fraction of isolated photons
is well described by pQCD for p_T > 7 GeV/c.Comment: 330 authors, 6 pages text, 3 figures, one table. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm