801 research outputs found
High-Fidelity Piezoelectric Audio Device
ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems
Cupric ion activity and the growth of phytoplankton clones isolated from different marine environments
The responses to {Cu++} (free cupric ion activity) of 24 clones of 11 species of marine phytoplankton in 4 algal classes were studied in a Cu-Tris buffered medium with a fluorometric method of measuring acclimated growth rates…
The first 8-13 micron spectra of globular cluster red giants: circumstellar silicate dust grains in 47 Tucanae (NGC 104)
We present 8-13 micron spectra of eight red giants in the globular cluster 47
Tucanae (NGC 104), obtained at the European Southern Observatory 3.6m
telescope. These are the first mid-infrared spectra of metal-poor, low-mass
stars. The spectrum of at least one of these, namely the extremely red,
large-amplitude variable V1, shows direct evidence of circumstellar grains made
of amorphous silicate.Comment: Accepted for publication in Astronomy and Astrophysics, 5 page
SeaWiFS technical report series. Volume 10: Modeling of the SeaWiFS solar and lunar observations
Post-launch stability monitoring of the Sea-viewing Wide Field-of-view Sensor (SeaWifs) will include periodic sweeps of both an onboard solar diffuser plate and the moon. The diffuser views will provide short-term checks and the lunar views will monitor long-term trends in the instrument's radiometric stability. Models of the expected sensor response to these observations were created on the SeaWiFS computer at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) using the Interactive Data Language (IDL) utility with a graphical user interface (GUI). The solar model uses the area of intersecting circles to simulate the ramping of sensor response while viewing the diffuser. This model is compared with preflight laboratory scans of the solar diffuser. The lunar model reads a high-resolution lunar image as input. The observations of the moon are simulated with a bright target recovery algorithm that includes ramping and ringing functions. Tests using the lunar model indicate that the integrated radiance of the entire lunar surface provides a more stable quantity than the mean of radiances from centralized pixels. The lunar model is compared to ground-based scans by the SeaWiFS instrument of a full moon in December 1992. Quality assurance and trend analyses routines for calibration and for telemetry data are also discussed
The Neon Abundance in the Ejecta of QU Vul From Late-Epoch IR Spectra
We present ground-based SpectroCam-10 mid-infrared, MMT optical, and Spitzer
Space Telescope IRS mid-infrared spectra taken 7.62, 18.75, and 19.38 years
respectively after the outburst of the old classical nova QU Vulpeculae (Nova
Vul 1984 #2). The spectra of the ejecta are dominated by forbidden line
emission from neon and oxygen. Our analysis shows that neon was, at the first
and last epochs respectively, more than 76 and 168 times overabundant by number
with respect to hydrogen compared to the solar value. These high lower limits
to the neon abundance confirm that QU Vul involved a thermonuclear runaway on
an ONeMg white dwarf and approach the yields predicted by models of the
nucleosynthesis in such events.Comment: ApJ 2007 accepted, 18 pages, including 5 figures, 1 tabl
A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613
We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf
irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron
photometry with broadband optical photometry and find that the optical data do
not detect 43% and misidentify an additional 11% of the total AGB population,
likely because of extinction caused by circumstellar material. Further, we find
that a narrowband optical carbon star study of IC 1613 detects 50% of the total
AGB population and only considers 18% of this population in calculating the
carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB
stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution
of bolometric luminosities and mass-loss rates are consistent with those for
other nearby metal-poor galaxies. Both the optical completeness fractions and
mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf
irregular, WLM, which is expected given their similar characteristics and
evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution
figures available at: http://webusers.astro.umn.edu/~djackson
Spitzer IRAC Observations of Star Formation in N159 in the LMC
We present observations of the giant HII region complex N159 in the LMC using
IRAC on the {\it Spitzer Space Telescope}. One of the two objects previously
identified as protostars in N159 has an SED consistent with classification as a
Class I young stellar object (YSO) and the other is probably a Class I YSO as
well, making these two stars the youngest stars known outside the Milky Way. We
identify two other sources that may also be Class I YSOs. One component,
N159AN, is completely hidden at optical wavelengths, but is very prominent in
the infrared. The integrated luminosity of the entire complex is L L, consistent with the observed radio emission assuming a
normal Galactic initial mass function (IMF). There is no evidence for a red
supergiant population indicative of an older burst of star formation. The N159
complex is 50 pc in diameter, larger in physical size than typical HII regions
in the Milky Way with comparable luminosity. We argue that all of the
individual components are related in their star formation history. The
morphology of the region is consistent with a wind blown bubble $\approx
1-2Myr-old that has initiated star formation now taking place at the rim. Other
than its large physical size, star formation in N159 appears to be
indistinguishable from star formation in the Milky Way.Comment: 14 figure
The male of Culicoides reevesi Wirth, with a redescription of the female and new seasonal activity, distribution, and biting records (Diptera: Ceratopogonidae)
The previously unknown male of the biting midge, Culicoides reevesi Wirth, is described and illustrated; the female is also redescribed and this species is reassigned to the leoni group. Previously known from California, Arizona, and New Mexico, C. reevesi is recorded for the 1st time from Utah (new record). Females of this aggressive, hematophagous species were collected while biting humans during evening crepuscular periods in California. Females exhibited a strong attraction to CO2 traps, and seasonal surveillance demonstrated that host-seeking occurred from late May until mid-October in both California and Utah. Small numbers of males were also collected in CO2 traps; however, both sexes showed little attraction to ultraviolet and incandescent light traps.Instituto de LimnologÃa "Dr. Raúl A. Ringuelet
- …