61 research outputs found
The Globular Cluster System of NGC 5128: Ages, Metallicities, Kinematics, and Structural Parameters
Abstract: We review our recent studies of the globular cluster system of NGC 5128. First, we have obtained low-resolution, high signal-to-noise spectroscopy of 72 globular clusters using Gemini-S/GMOS to obtain the ages, metallicities, and the level of alpha enrichment of the metal-poor and metal-rich globular cluster subpopulations. Second, we have explored the rotational signature and velocity dispersion of the galaxy’s halo using over 560 globular clusters with radial velocity measurements. We have also compared the dependence of these properties on galactocentric distance and globular cluster
age and metallicity. Using globular clusters as tracer objects, we have analyzed the mass, and M/L ratio of NGC 5128. Last, we have measured the structural parameters, such as half-light radii, of over 570 globular clusters from a superb 1.2 square degree Magellan/IMACS image. We will present the
findings of these studies and discuss the connection to the formation and evolution of NGC 512
Recommended from our members
Results Of A Genome-wide Genetic Screen For Panic Disorder
Panic disorder is characterized by spontaneous and recurrent panic attacks, often accompanied by agoraphobia. The results of family, twin, and segregation studies suggest a genetic role in the etiology of the illness. We have genotyped up to 23 families that have a high density of panic disorder with 540 microsatellite DNA markers in a first-pass genomic screen. The thirteen best families (ELOD > 6.0 under the dominant genetic model) have been genotyped with an ordered set of markers encompassing all the autosomes, at an average marker density of 11 cM. Over 110,000 genotypes have been generated on the whole set of families, and the data have been analyzed under both a dominant and a recessive model, and with the program SIBPAIR.
No lod scores exceed 2.0 for either parametric model. Two markers give lod scores over 1.0 under the dominant model (chromosomes 1p and 20p), and four do under the recessive model (7p, 17p, 20q, and X/Y). One of these (20p) may be particularly promising. Analysis with SIBPAIR yielded P values equivalent to a lod score of 1.0 or greater (i.e., P < .016, one-sided, uncorrected for multiple tests) for 11 marker loci (2, 7p, 8p, 8q, 9p, 11q, 12q, 16p, 20p and 20q)
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Spectral properties of X-ray binaries in Centaurus A
We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N , and present the spectral parameters of sources with L ≳ 2 × 10 erg s. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant of a small late-type galaxy. Our results also provide tentative support for the apparent "gap" in the mass distribution of compact objects between ∼2-5 M . We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority (∼70%-80%) of potential Roche lobe filling donors in the Cen A halo are ≳ 12 Gyr old, while BH LMXBs require donors ≳ 1 M to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L ≥ 5 × 10 erg s for the XB population of early-type galaxies; for older stellar populations, there are fewer stars ≳ 1 M , which are required to form the more luminous sources.Peer reviewe
Comparing the white dwarf cooling sequences in 47 tuc and NGC 6397
Using deep Hubble Space Telescope imaging, color-magnitude diagrams are constructed for the globular clusters 47 Tuc and NGC 6397. As expected, because of its lower metal abundance, the main sequence of NGC 6397 lies well to the blue of that of 47 Tuc. A comparison of the white dwarf cooling sequences of the two clusters, however, demonstrates that these sequences are indistinguishable over most of their loci - a consequence of the settling out of heavy elements in the dense white dwarf atmosphere and the near equality of their masses. Lower quality data on M4 continues this trend to a third cluster whose metallicity is intermediate between these two. While the path of the white dwarfs in the color-magnitude diagram is nearly identical in 47 Tuc and NGC 6397, the numbers of white dwarfs along the path are not. This results from the relatively rapid relaxation in NGC 6397 compared to 47 Tuc and provides a cautionary note that simply counting objects in star clusters in random locations as a method of testing stellar evolutionary theory is likely dangerous unless dynamical considerations are included. \ua9 2013. The American Astronomical Society. All rights reserved.Peer reviewed: YesNRC publication: Ye
New results on particle acceleration in the Centaurus A jet and counterjet from a deep Chandra observation
Original article can be found at: http://www.iop.org/EJ/journal/apjl Copyright American Astronomical Society DOI: 10.1086/524197 [Full text of this article is not available in the UHRA]We present new deep Chandra observations of the Centaurus A jet, with a combined on-source exposure time of 719 ks. These data allow detailed X-ray spectral measurements to be made along the jet out to its disappearance at 4.5 kpc from the nucleus. We distinguish several regimes of high-energy particle acceleration; while the inner part of the jet is dominated by knots and has properties consistent with local particle acceleration at shocks, the particle acceleration in the outer 3.4 kpc of the jet is likely to be dominated by an unknown distributed acceleration mechanism. In addition to several compact counterjet features, we detect probable extended emission from a counterjet out to 2.0 kpc from the nucleus and argue that this implies that the diffuse acceleration process operates in the counterjet as well. A preliminary search for X-ray variability finds no jet knots with dramatic flux density variations, unlike the situation seen in M87.Peer reviewe
Evidence for Non-Hydrostatic Gas Motions in the Hot Interstellar Medium of Centaurus A
Original article can be found at: http://www.iop.org/EJ/journal/apjl Copyright American Astronomical Society DOI: 10.1086/588023 [Full text of this article is not available in the UHRA]We present preliminary results from a deep (600 ks) Chandra observation of the hot interstellar medium of the nearby early-type galaxy Centaurus A. We find a surface brightness discontinuity in the gas ~3.5 kpc from the nucleus spanning a 120° arc. The temperature of the gas is 0.60 ± 0.05 keV (0.68 ± 0.10 keV) interior (exterior) to the discontinuity. The elemental abundance is poorly constrained by the spectral fits, but if the abundance is constant across the discontinuity, there is a factor of 2.3 ± 0.4 pressure jump across the discontinuity. This would imply that the gas is moving at 470 ± 100 km s−1, or Mach 1.0 ± 0.2 (1.2 ± 0.2) relative to the sound speed of the gas external (internal) to the discontinuity. Alternatively, pressure balance could be maintained if there is a large (factor of ~7) discontinuity in the elemental abundance. We suggest that the observed discontinuity is the result of nonhydrostatic motion of the gas core (i.e., sloshing) due to the recent merger. In this situation, both gas motions and abundance gradients are important in the visibility of the discontinuity. Cen A is in the late stages of merging with a small late-type galaxy, and a large discontinuity in density and abundance across a short distance demonstrates that the gas of the two galaxies remains poorly mixed, even several hundred million years after the merger. The pressure discontinuity may have had a profound influence on the temporal evolution of the kiloparsec-scale jet. The jet could have decollimated, crossing the discontinuity and thereby forming the northeast radio lobe.Peer reviewe
Luminosity functions of LMXBs in Centaurus A: globular clusters versus the field
Original article can be found at: http://www.iop.org/EJ/journal/apj Copyright American Astronomical Society. DOI: 10.1088/0004-637X/701/1/471 [Full text of this article is not available in the UHRA]We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of ~8 × 1035 erg s–1, about ~2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(LX ) 37.2-37.6, below which the luminosity distribution follows a dN/d(ln L) ~ const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at 20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.Peer reviewe
- …