109 research outputs found
Characterization of large genomic deletions in the FBN1 gene using multiplex ligation-dependent probe amplification
<p>Abstract</p> <p>Background</p> <p>Connective tissue diseases characterized by aortic aneurysm, such as Marfan syndrome, Loeys-Dietz syndrome and Ehlers Danlos syndrome type IV are heterogeneous and despite overlapping phenotypes, the natural history, clinical manifestations and interventional course for each diagnosis can be quite unique. The majority of mutations involved in the etiology of these disorders are missense and nonsense mutations. However, large deletions and duplications undetected by sequencing may be implicated in their pathogenesis, and may explain the apparent lack of genotype-phenotype correlation in a subset of patients. The objective of this study was to search for large pathogenic deletions and/or duplications in the <it>FBN1, TGFβR1</it>, and <it>TGFβR2 </it>genes using multiplex-ligation dependent probe amplification (MLPA) in patients with aortopathy, in whom no mutations in the <it>FBN1, TGFβR1</it>, and <it>TGFβR2 </it>genes were identified by sequencing.</p> <p>Methods</p> <p>The study included 14 patients from 11 unrelated families with aortic aneurysm. Of those, six patients (including 3 first-degree relatives), fulfilled the revised Ghent criteria for Marfan syndrome, and eight had predominantly aortic aneurysm/dilatation with variable skeletal and craniofacial involvement. MLPA for <it>FBN1, TGFβR1</it>, and <it>TGFβR2 </it>was carried out in all patients. A 385 K chromosome 15 specific array was used in two patients with a deletion of the entire <it>FBN1 </it>in order to define its size and boundaries.</p> <p>Results</p> <p>We identified two novel large deletions in the <it>FBN1 </it>gene in four patients of two unrelated families who met clinical diagnostic criteria for Marfan syndrome. One patient was found to have a <it>FBN1 </it>deletion encompassing exons 1-5. The other three patients had a 542 Kb deletion spanning the whole <it>FBN1 </it>gene and five additional genes (<it>SLC24A5, MYEF2, CTXN2, SLC12A1, DUT</it>) in the chromosome 15.</p> <p>Conclusions</p> <p>Our findings expand the number of large <it>FBN1 </it>deletions, and emphasize the importance of screening for large genomic deletions in connective tissue disorders featuring aortopathies, especially for those with classic Marfan phenotype.</p
Parkes Weber syndrome associated with two somatic pathogenic variants in RASA1
Parkes Weber syndrome is associated with autosomal dominant inheritance, caused by germline heterozygous inactivating changes in th
5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia
<p>Abstract</p> <p>Background</p> <p>Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (<it>ACVRL1</it>) or Endoglin (<it>ENG</it>) gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR) of <it>ENG</it>.</p> <p>Methods and Results</p> <p>We sequenced the 5'UTR of <it>ENG </it>for 154 HHT patients without mutations in <it>ENG </it>or <it>ACVRL1 </it>coding regions. We found a mutation (c.-127C > T), which is predicted to affect translation initiation and alter the reading frame of endoglin. This mutation was found in a family with linkage to the <it>ENG</it>, as well as in three other patients, one of which had an affected sibling with the same mutation. <it>In vitro </it>expression studies showed that a construct with the c.-127C > T mutation alters the translation and decreases the level of the endoglin protein. In addition, a c.-9G > A mutation was found in three patients, one of whom was homozygous for this mutation. Expression studies showed decreased protein levels suggesting that the c.-9G > A is a hypomorphic mutation.</p> <p>Conclusions</p> <p>Our results emphasize the need for the inclusion of the 5'UTR region of <it>ENG </it>in clinical testing for HHT.</p
BMP9 Mutations Cause a Vascular-Anomaly Syndrome with Phenotypic Overlap with Hereditary Hemorrhagic Telangiectasia
Hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, is caused by mutations in genes involved in the transforming growth factor beta (TGF-β) signaling pathway (ENG, ACVRL1, and SMAD4). Yet, approximately 15% of individuals with clinical features of HHT do not have mutations in these genes, suggesting that there are undiscovered mutations in other genes for HHT and possibly vascular disorders with overlapping phenotypes. The genetic etiology for 191 unrelated individuals clinically suspected to have HHT was investigated with the use of exome and Sanger sequencing; these individuals had no mutations in ENG, ACVRL1, and SMAD4. Mutations in BMP9 (also known as GDF2) were identified in three unrelated probands. These three individuals had epistaxis and dermal lesions that were described as telangiectases but whose location and appearance resembled lesions described in some individuals with RASA1-related disorders (capillary malformation-arteriovenous malformation syndrome). Analyses of the variant proteins suggested that mutations negatively affect protein processing and/or function, and a bmp9-deficient zebrafish model demonstrated that BMP9 is involved in angiogenesis. These data confirm a genetic cause of a vascular-anomaly syndrome that has phenotypic overlap with HHT
Homozygous GDF2 nonsense mutations result in a loss of circulating BMP9 and BMP10 and are associated with either PAH or an "HHT-like" syndrome in children.
BACKGROUND: Disrupted endothelial BMP9/10 signaling may contribute to the pathophysiology of both hereditary hemorrhagic telangiectasia (HHT) and pulmonary arterial hypertension (PAH), yet loss of circulating BMP9 has not been confirmed in individuals with ultra-rare homozygous GDF2 (BMP9 gene) nonsense mutations. We studied two pediatric patients homozygous for GDF2 (BMP9 gene) nonsense mutations: one with PAH (c.[76C>T];[76C>T] or p.[Gln26Ter];[Gln26Ter] and a new individual with pulmonary arteriovenous malformations (PAVMs; c.[835G>T];[835G>T] or p.[Glu279Ter];[Glu279Ter]); both with facial telangiectases. METHODS: Plasma samples were assayed for BMP9 and BMP10 by ELISA. In parallel, serum BMP activity was assayed using an endothelial BRE-luciferase reporter cell line (HMEC1-BRE). Proteins were expressed for assessment of secretion and processing. RESULTS: Plasma levels of both BMP9 and BMP10 were undetectable in the two homozygous index cases and this corresponded to low serum-derived endothelial BMP activity in the patients. Measured BMP9 and BMP10 levels were reduced in the asymptomatic heterozygous p.[Glu279Ter] parents, but serum activity was normal. Although expression studies suggested alternate translation can be initiated at Met57 in the p.[Gln26Ter] mutant, this does not result in secretion of functional BMP9. CONCLUSION: Collectively, these data show that homozygous GDF2 mutations, leading to a loss of circulating BMP9 and BMP10, can cause either pediatric PAH and/or "HHT-like" telangiectases and PAVMs. Although patients reported to date have manifestations that overlap with those of HHT, none meet the Curaçao criteria for HHT and seem distinct from HHT in terms of the location and appearance of telangiectases, and a tendency for tiny, diffuse PAVMs
Microarray analysis of port wine stains before and after pulsed dye laser treatment
BACKGROUND AND OBJECTIVES: Neither the pathogenesis of port wine stain (PWS) birthmarks nor tissue effects of pulsed dye laser (PDL) treatment of these lesions is fully understood. There are few published reports utilizing gene expression analysis in human PWS skin. We aim to compare gene expression in PWS before and after PDL, using DNA microarrays that represent most, if not all, human genes to obtain comprehensive molecular profiles of PWS lesions and PDL-associated tissue effects. MATERIALS AND METHODS: Five human subjects had PDL treatment of their PWS. One week later, three biopsies were taken from each subject: normal skin (N); untreated PWS (PWS); PWS post-PDL (PWS + PDL). Samples included two lower extremity lesions, two facial lesions, and one facial nodule. High-quality total RNA isolated from skin biopsies was processed and applied to Affymetrix Human gene 1.0ST microarrays for gene expression analysis. We performed a 16 pair-wise comparison identifying either up- or down-regulated genes between N versus PWS and PWS versus PWS + PDL for four of the donor samples. The PWS nodule (nPWS) was analyzed separately. RESULTS: There was significant variation in gene expression profiles between individuals. By doing pair-wise comparisons between samples taken from the same donor, we were able to identify genes that may participate in the formation of PWS lesions and PDL tissue effects. Genes associated with immune, epidermal, and lipid metabolism were up-regulated in PWS skin. The nPWS exhibited more profound differences in gene expression than the rest of the samples, with significant differential expression of genes associated with angiogenesis, tumorigenesis, and inflammation. CONCLUSION: In summary, gene expression profiles from N, PWS, and PWS + PDL demonstrated significant variation within samples from the same donor and between donors. By doing pair-wise comparisons between samples taken from the same donor and comparing these results between donors, we were able to identify genes that may participate in formation of PWS and PDL effects. Our preliminary results indicate changes in gene expression of angiogenesis-related genes, suggesting that dysregulation of angiogenic signals and/or components may contribute to PWS pathology
Genome-wide analyses identify common variants associated with macular telangiectasia type 2
Idiopathic juxtafoveal retinal telangiectasis type 2 (macular telangiectasia type 2; MacTel) is a rare neurovascular degenerative retinal disease. To identify genetic susceptibility loci for MacTel, we performed a genome-wide association study (GWAS) with 476 cases and 1,733 controls of European ancestry. Genome-wide significant associations (P < 5 × 10−8) were identified at three independent loci (rs73171800 at 5q14.3, P = 7.74 × 10−17; rs715 at 2q34, P = 9.97 × 10−14; rs477992 at 1p12, P = 2.60 × 10−12) and then replicated (P < 0.01) in an independent cohort of 172 cases and 1,134 controls. The 5q14.3 locus is known to associate with variation in retinal vascular diameter, and the 2q34 and 1p12 loci have been implicated in the glycine/serine metabolic pathway. We subsequently found significant differences in blood serum levels of glycine (P = 4.04 × 10−6) and serine (P = 2.48 × 10−4) between MacTel cases and controls
- …