3,750 research outputs found

    A high-speed digital signal processor for atmospheric radar, part 7.3A

    Get PDF
    The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s

    Effect of Agricultural Activity on River Water Quality: A Case Study for the Lower Colorado River Basin

    Get PDF
    This case study investigates the effect of a change in cropping pattern involving expanded acres of crops for biofuel feedstock, on the discharge of nutrients to rivers. Annual data from 1968-2008 on stream flow, cropped acres, and precipitation for Wharton County, Texas are used. A positive impact of increased corn acreage over this period on river discharge is identified.Biofuels, Stream Flow, Discharge, Production Economics, Resource /Energy Economics and Policy,

    Evaporite karst geohazards in the Delaware Basin, Texas: review of traditional karst studies coupled with geophysical and remote sensing characterization

    Get PDF
    Evaporite karst throughout the Gypsum Plain of west Texas is complex and extensive, including manifestations ranging from intrastratal brecciation and hypogene caves to epigene features and suffosion caves. Recent advances in hydrocarbon exploration and extraction has resulted in increased infrastructure development and utilization in the area; as a result, delineation and characterization of potential karst geohazards throughout the region have become a greater concern. While traditional karst surveys are essential for delineating the subsurface extent and morphology of individual caves for speleogenetic interpretation, these methods tend to underestimate the total extent of karst development and require surficial manifestation of karst phenomena. Therefore, this study utilizes a composite suite of remote sensing and traditional field studies for improved karst delineation and detection of potential karst geohazards within gypsum karst. Color InfraRed (CIR) imagery were utilized for delineation of lineaments associated with fractures, while Normalized Density Vegetation Index (NDVI) analyses were used to delineate regions of increased moisture flux and probable zones of shallow karst development. Digital Elevation Models (DEM) constructed from high-resolution LiDAR (Light Detection and Ranging) data were used to spatially interpret sinkholes, while analyses of LiDAR intensity data were used in a novel way to categorize local variations in surface geology. Resistivity data, including both direct current (DC) and capacitively coupled (CC) resistivity analyses, were acquired and interpreted throughout the study area to delineate potential shallow karst geohazards specifically associated with roadways of geohazard concern; however, detailed knowledge of the surrounding geology and local karst development proved essential for proper interpretation of resistivity inversions. The composite suite of traditional field investigations and remotely sensed karst delineations used in this study illustrate how complex gypsum karst terrains can be characterized with greater detail through the utilization of rapidly advancing technologies, especially in arid environments with low vegetation densities

    Seawater Desalination for Municipal Water Production

    Get PDF
    This paper examines the optimal allocation of several inputs in the context of seawater desalination by reverse osmosis (RO) as a source of municipal (or commercial or industrial) water. A cost-minimization model is developed, a production function is estimated, and sensitivity analyses are conducted using the optimization model to investigate the effect of environmental conditions and economic factors on the optimal input portfolio and the cost of operating a modeled seawater desalination facility. The objectives of this paper are to better understand the effect on the seawater desalination facility’s costs and input portfolio from changes in water quality, membrane lifespan, daily operations schedule, and energy prices. Findings include that lower total facility costs are associated with warm-weather water quality parameters, longer membrane life, and mid-range daily operations schedule (14.265 hours/day). Under most conditions, an interruptible power supply regime reduces facility costs. Exceptions include when the interruptible power supply regime implies significant reductions in operating hours and the associated reduction in energy price is very small.water, production, seawater desalination, Resource /Energy Economics and Policy,

    New coherent detector for terahertz radiation based on excitonic electroabsorption

    Full text link
    We demonstrate a new technique for the coherent measurement of free‐space THz electrical transients, based on the parallel‐field excitonic electroabsorption effect in GaAs quantum wells. A THz transient generated from a photoconductive dipole antenna is measured with a rise time of 290 fs and a full width at half maximum of 360 fs. The initial rise of the THz wave form is abrupt, and does not display the exponential leading edge apparent in waveforms measured with photoconductive techniques. The detector sensitivity is sub‐100 mV/cm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70714/2/APPLAB-61-15-1763-1.pd

    General plane wave mode functions for scalar-driven cosmology

    Full text link
    We give a solution for plane wave scalar, vector and tensor mode functions in the presence of any homogeneous, isotropic and spatially flat cosmology which is driven by a single, minimally coupled scalar. The solution is obtained by rescaling the various mode functions so that they reduce, with a suitable scale factor and a suitable time variable, to those of a massless, minimally coupled scalar. We then express the general solution in terms of co-moving time and the original scale factor.Comment: 6 pages, revtex4, no figures, revised version corrects an embarrassing mistake (in the published version) for the parameter q_C. Affected eqns are 45 and 6

    Fields of accelerated sources: Born in de Sitter

    Full text link
    This paper deals thoroughly with the scalar and electromagnetic fields of uniformly accelerated charges in de Sitter spacetime. It gives details and makes various extensions of our Physical Review Letter from 2002. The basic properties of the classical Born solutions representing two uniformly accelerated charges in flat spacetime are first summarized. The worldlines of uniformly accelerated particles in de Sitter universe are defined and described in a number of coordinate frames, some of them being of cosmological significance, the other are tied naturally to the particles. The scalar and electromagnetic fields due to the accelerated charges are constructed by using conformal relations between Minkowski and de Sitter space. The properties of the generalized `cosmological' Born solutions are analyzed and elucidated in various coordinate systems. In particular, a limiting procedure is demonstrated which brings the cosmological Born fields in de Sitter space back to the classical Born solutions in Minkowski space. In an extensive Appendix, which can be used independently of the main text, nine families of coordinate systems in de Sitter spacetime are described analytically and illustrated graphically in a number of conformal diagrams.Comment: 37 pages, 23 figures, reformatted version of the paper published in JMP; low-resolution figures due to arXiv size restrictions; for the version with high-resolution figures see http://utf.mff.cuni.cz/~krtous/papers

    The Fermion Self-Energy during Inflation

    Full text link
    We compute the one loop fermion self-energy for massless Dirac + Einstein in the presence of a locally de Sitter background. We employ dimensional regularization and obtain a fully renormalized result by absorbing all divergences with BPHZ counterterms. An interesting technical aspect of this computation is the need for a noninvariant counterterm owing to the breaking of de Sitter invariance by our gauge condition. Our result can be used in the quantum-corrected Dirac equation to search for inflation-enhanced quantum effects from gravitons, analogous to those which have been found for massless, minimally coupled scalars.Comment: 63 pages, 3 figures (uses axodraw.sty), LaTeX 2epsilon. Revised version (to appear in Classical and Quantum Gravity) corrects some typoes and contains some new reference
    corecore