2,659 research outputs found

    Role of thermal friction in relaxation of turbulent Bose-Einstein condensates

    Full text link
    In recent experiments, the relaxation dynamics of highly oblate, turbulent Bose-Einstein condensates (BECs) was investigated by measuring the vortex decay rates in various sample conditions [Phys. Rev. A 90\bf 90, 063627 (2014)] and, separately, the thermal friction coefficient Ξ±\alpha for vortex motion was measured from the long-time evolution of a corotating vortex pair in a BEC [Phys. Rev. A 92\bf 92, 051601(R) (2015)]. We present a comparative analysis of the experimental results, and find that the vortex decay rate Ξ“\Gamma is almost linearly proportional to Ξ±\alpha. We perform numerical simulations of the time evolution of a turbulent BEC using a point-vortex model equipped with longitudinal friction and vortex-antivortex pair annihilation, and observe that the linear dependence of Ξ“\Gamma on Ξ±\alpha is quantitatively accounted for in the dissipative point-vortex model. The numerical simulations reveal that thermal friction in the experiment was too strong to allow for the emergence of a vortex-clustered state out of decaying turbulence.Comment: 7 pages, 5 figure

    The Light and Period Variations of the Eclipsing Binary AA Ursae Majoris

    Full text link
    We present new multiband CCD photometry for AA UMa made on 8 nights between January and March 2009; the RR light curves are the first ever compiled. Historical light curves, as well as ours, display partial eclipses and inverse O'Connell effects with Max I fainter than Max II. Among possible spot models, a cool spot on either of the component stars and its variability with time permit good light-curve representations for the system. A total of 194 eclipse timings over 81 yrs, including our five timings, were used for ephemeris computations. We found that the orbital period of the system has varied due to a periodic oscillation overlaid on an upward parabolic variation. The continuous period increase at a fractional rate of ++1.3Γ—\times10βˆ’10^{-10} is consistent with that calculated from the W-D code and can be interpreted as a thermal mass transfer from the less to the more massive secondary star at a rate of 6.6Γ—\times10βˆ’8^{-8} MβŠ™_\odot yrβˆ’1^{-1}. The periodic component is in satisfactory accord with a light-time effect due to an unseen companion with a period of 28.2 yrs, a semi-amplitude of 0.007 d, and a minimum mass of M3sin⁑i3M_3 \sin i_3=0.25 MβŠ™M_\odot but this period variation could also arise from magnetic activity.Comment: 23 pages, including 5 figures and 8 tables, accepted for publication in PAS

    Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

    Get PDF
    Abstract -In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine

    Soft Tissue Surgery for Equinus Deformity in Spastic Hemiplegic Cerebral Palsy: Effects on Kinematic and Kinetic Parameters

    Get PDF
    The purpose of this study was to evaluate how soft tissue surgery for correcting equinus deformity affects the kinematic and kinetic parameters of the ankle and proximal joints. Sixteen children with spastic hemiplegic cerebral palsy and equinus deformities (age range 3-16 years) were included. Soft tissue surgeries were performed exclusively on the ankle joint area in all subjects. Using computerized gait analysis (Vicon 370 Motion Analysis System), the kinematic and kinetic parameters during barefoot ambulation were collected preoperatively and postoperatively. In all 16 children, the abnormally increased ankle plantar flexion and pelvis anterior tilting on the sagittal plane were significantly improved without a weakening of push-off (p < 0.05). In a group of 8 subjects with a recurvatum knee gait pattern before operation, the postoperative kinematic and kinetic parameters of the knee joint were significantly improved (p < 0.05). In a group of 8 subjects with ipsilateral pelvic external rotation before operation, the postoperative pelvic deviations on the transverse plane were significantly decreased (p < 0.05). These findings suggest that the soft tissue surgery for correcting equinus deformity improves not only the abnormal gait pattern of the ankle, but also that of the knee and pelvis
    • …
    corecore