8,400 research outputs found
The timing of disability insurance application: a choice-based semiparametric hazard model
We use a choice-based subsample of Social Security Disability Insurance applicants from the 1978 Social Security Survey of Disability and Work to test the importance of policy variables on the timing of application for disability insurance benefits following the onset of a work limiting health condition. We correct for choice-based sampling by extending the Manski-Lerman (1977) correction to the likelihood function of our continuous time hazard model defined with semiparametric unmeasured heterogeneity and find that this correction significantly affects the results. We find that economic variables-the size of the disability benefit, expected wage earnings and accommodation-matter.Insurance ; Social security
Isobar of an ideal Bose gas within the grand canonical ensemble
We investigate the isobar of an ideal Bose gas confined in a cubic box within
the grand canonical ensemble, for a large yet finite number of particles, N.
After solving the equation of the spinodal curve, we derive precise formulae
for the supercooling and the superheating temperatures which reveal an N^{-1/3}
or N^{-1/4} power correction to the known Bose-Einstein condensation
temperature in the thermodynamic limit. Numerical computations confirm the
accuracy of our analytical approximation, and further show that the isobar
zigzags on the temperature-volume plane if N is greater than or equal to 14393.
In particular, for the Avogadro's number of particles, the volume expands
discretely about 10^5 times. Our results quantitatively agree with a previous
study on the canonical ensemble within 0.1% error.Comment: 6 pages, 2 figures; Reference added. Accepted for publication in
Phys. Rev.
Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells
Donor liver-derived dendritic cells (DC) have recently been identified within various lymphoid and nonlymphoid tissues of organ allograft recipients, including nonimmunosuppressed mice transplanted with and permanently accepting major histocompatibility complex (MHC)-disparate hepatic allografts. These findings have raised questions about the basis of the tolerogenicity of the liver—and, in particular, about the properties of liver-derived DC. To study further the structure, immunophenotype and allostimu-latory activity of leukocytes resident in normal mouse (B10.BR; H-2k, I-Ek) liver, a procedure was developed to maximize the yield of viable, nonparenchymal cells (NPC) obtained following collagenase digestion of perfused liver fragments and density centrifugation (Per-coll). These cells comprised populations expressing lymphoid and myeloid cell surface antigens. As compared with spleen cells, they proved good allostimula-tors of naive (BIO; H-2b, I-E") splenic T cells when tested in primary mixed leukocyte reactions (MLR). After overnight (18-hr) incubation of the NPC, enrichment for transiently adherent, low-density (LD) cells on metrizamide gradients permitted the recovery of low numbers of cells (approx. 2-5 × 105 per liver), many of which displayed distinct DC morphology. Flow cytometric analysis revealed that these cells were CD3-, CD4-, CD8-, and B220-, but strongly expressed CD45 (leukocyte-common antigen), and mild-to-moderate levels of CD lib, heat-stable antigen, and CD44. The cells also expressed moderate intensity of NLDC 145 but not 33D1, DC restricted markers which have been shown to be differentially expressed on mouse DC isolated from various organs. This DC-enriched population was more strongly MHC class II(I-Ek)+ than NPC, as determined by immunocytochemistry and flow cytometry and exhibited much more potent allo-stimulatory activity for naive T cells. These findings demonstrate that freshly isolated murine liver NPC, and perhaps their counterparts in situ, exhibit allo-stimulatory activity that is enhanced in the nonadherent, low-density (DC-enriched) fraction after overnight culture. They further suggest that the © 1994 by Williams and Wilkins
A Novel On-chip Three-dimensional Micromachined Calorimeter with Fully Enclosed and Suspended Thin-film Chamber for Thermal Characterization of Liquid Samples
A microfabricated calorimeter (μ-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system. The μ-calorimeter has been designed to perform DC and AC calorimetry, thermal wave analysis, and differential scanning calorimetry. The μ-calorimeter fabricated with an integrated heater and a temperature sensor on opposite sides of the reaction chamber allows to perform thermal diffusivity and specific heat measurements on liquid samples with same device. Measurement results for diffusivity and heat capacitance using time delay method and thermal wave analysis are presented
Origins of anomalous electronic structures of epitaxial graphene on silicon carbide
On the basis of first-principles calculations, we report that a novel
interfacial atomic structure occurs between graphene and the surface of silicon
carbide, destroying the Dirac point of graphene and opening a substantial
energy gap there. In the calculated atomic structures, a quasi-periodic
domain pattern emerges out of a larger commensurate
periodic interfacial reconstruction,
resolving a long standing experimental controversy on the periodicity of the
interfacial superstructures. Our theoretical energy spectrum shows a gap and
midgap states at the Dirac point of graphene, which are in excellent agreement
with the recently-observed anomalous angle-resolved photoemission spectra.
Beyond solving unexplained issues of epitaxial graphene, our atomistic study
may provide a way to engineer the energy gaps of graphene on substrates.Comment: Additional references added; published version; 4 pages, 4 figure
Thermal fluctuation field for current-induced domain wall motion
Current-induced domain wall motion in magnetic nanowires is affected by
thermal fluctuation. In order to account for this effect, the
Landau-Lifshitz-Gilbert equation includes a thermal fluctuation field and
literature often utilizes the fluctuation-dissipation theorem to characterize
statistical properties of the thermal fluctuation field. However, the theorem
is not applicable to the system under finite current since it is not in
equilibrium. To examine the effect of finite current on the thermal
fluctuation, we adopt the influence functional formalism developed by Feynman
and Vernon, which is known to be a useful tool to analyze effects of
dissipation and thermal fluctuation. For this purpose, we construct a quantum
mechanical effective Hamiltonian describing current-induced domain wall motion
by generalizing the Caldeira-Leggett description of quantum dissipation. We
find that even for the current-induced domain wall motion, the statistical
properties of the thermal noise is still described by the
fluctuation-dissipation theorem if the current density is sufficiently lower
than the intrinsic critical current density and thus the domain wall tilting
angle is sufficiently lower than pi/4. The relation between our result and a
recent result, which also addresses the thermal fluctuation, is discussed. We
also find interesting physical meanings of the Gilbert damping alpha and the
nonadiabaticy parameter beta; while alpha characterizes the coupling strength
between the magnetization dynamics (the domain wall motion in this paper) and
the thermal reservoir (or environment), beta characterizes the coupling
strength between the spin current and the thermal reservoir.Comment: 16 page, no figur
Excitation spectroscopy of vortex lattices in a rotating Bose-Einstein condensate
Excitation spectroscopy of vortex lattices in rotating Bose-Einstein
condensates is described. We numerically obtain the Bogoliubov-deGenne
quasiparticle excitations for a broad range of energies and analyze them in the
context of the complex dynamics of the system. Our work is carried out in a
regime in which standard hydrodynamic assumptions do not hold, and includes
features not readily contained within existing treatments.Comment: 4 pages, 4 figures. Submitted for publicatio
- …