404 research outputs found
The L^2 geometry of spaces of harmonic maps S^2 -> S^2 and RP^2 -> RP^2
Harmonic maps from S^2 to S^2 are all weakly conformal, and so are
represented by rational maps. This paper presents a study of the L^2 metric
gamma on M_n, the space of degree n harmonic maps S^2 -> S^2, or equivalently,
the space of rational maps of degree n. It is proved that gamma is Kaehler with
respect to a certain natural complex structure on M_n. The case n=1 is
considered in detail: explicit formulae for gamma and its holomorphic
sectional, Ricci and scalar curvatures are obtained, it is shown that the space
has finite volume and diameter and codimension 2 boundary at infinity, and a
certain class of Hamiltonian flows on M_1 is analyzed. It is proved that
\tilde{M}_n, the space of absolute degree n (an odd positive integer) harmonic
maps RP^2 -> RP^2, is a totally geodesic Lagrangian submanifold of M_n, and
that for all n>1, \tilde{M}_n is geodesically incomplete. Possible
generalizations and the relevance of these results to theoretical physics are
briefly discussed.Comment: 27 pages, 2 figure
Perturbing Around A Warped Product Of AdS_4 and Seven-Ellipsoid
We compute the spin-2 Kaluza-Klein modes around a warped product of AdS_4 and
a seven-ellipsoid. This background with global G_2 symmetry is related to a
U(N) x U(N) N=1 superconformal Chern-Simons matter theory with sixth order
superpotential. The mass-squared in AdS_4 is quadratic in G_2 quantum number
and KK excitation number. We determine the dimensions of spin-2 operators using
the AdS/CFT correspondence. The connection to N=2 theory preserving SU(3) x
U(1)_R is also discussed.Comment: 21pp; The second and last paragraphs of section 2, the footnotes 1
and 2 added and to appear in JHE
Meson Exchange Currents in (e,e'p) recoil polarization observables
A study of the effects of meson-exchange currents and isobar configurations
in reactions is presented. We use a distorted wave
impulse approximation (DWIA) model where final-state interactions are treated
through a phenomenological optical potential. The model includes relativistic
corrections in the kinematics and in the electromagnetic one- and two-body
currents. The full set of polarized response functions is analyzed, as well as
the transferred polarization asymmetry. Results are presented for proton
knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the
dominance of OB over MEC, and a summary of differences with previous MEC
calculations. To be published in PR
Resonance structures in the multichannel quantum defect theory for the photofragmentation processes involving one closed and many open channels
The transformation introduced by Giusti-Suzor and Fano and extended by
Lecomte and Ueda for the study of resonance structures in the multichannel
quantum defect theory (MQDT) is used to reformulate MQDT into the forms having
one-to-one correspondence with those in Fano's configuration mixing (CM) theory
of resonance for the photofragmentation processes involving one closed and many
open channels. The reformulation thus allows MQDT to have the full power of the
CM theory, still keeping its own strengths such as the fundamental description
of resonance phenomena without an assumption of the presence of a discrete
state as in CM.Comment: 7 page
Testing a novel large-N reduction for N=4 super Yang-Mills theory on RxS^3
Recently a novel large-N reduction has been proposed as a maximally
supersymmetric regularization of N=4 super Yang-Mills theory on RxS^3 in the
planar limit. This proposal, if it works, will enable us to study the theory
non-perturbatively on a computer, and hence to test the AdS/CFT correspondence
analogously to the recent works on the D0-brane system. We provide a nontrivial
check of this proposal by performing explicit calculations in the large-N
reduced model, which is nothing but the so-called plane wave matrix model,
around a particular stable vacuum corresponding to RxS^3. At finite temperature
and at weak coupling, we reproduce precisely the deconfinement phase transition
in the N=4 super Yang-Mills theory on RxS^3. This phase transition is
considered to continue to the strongly coupled regime, where it corresponds to
the Hawking-Page transition on the AdS side. We also perform calculations
around other stable vacua, and reproduce the phase transition in super
Yang-Mills theory on the corresponding curved space-times such as RxS^3/Z_q and
RxS^2.Comment: 24 pages, 4 figure
Polarization transfer in the HeH reaction
Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2
was measured at the Mainz Microtron MAMI. The ratio of the transverse to the
longitudinal polarization components of the ejected protons was compared with
the same ratio for elastic ep scattering. The results are consistent with a
recent fully relativistic calculation which includes a predicted medium
modification of the proton form factor based on a quark-meson coupling model.Comment: 5 pages, Latex, 2 postscript figures, submitted to Physics Letters
nnResting state fMRI scanner instabilities revealed by longitud inal phantom scans in a multi-center study
Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data from a group of subjects over time and/or at different locations. It is important to regularly monitor the performance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approximately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters were calculated for each scan using the functional Biomarker Imaging Research Network\u27s (fBIRN) QA phantom and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial contribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change in preprocessing can have a significant impact on seed-based connectivity measurements for some individual subjects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities useful in similar studies
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Austenite in Transformation-Induced Plasticity Steel Subjected to Multiple Isothermal Heat Treatments
The thermodynamic limit to the progress of the bainite reaction in steels containing a cementite inhibitor often leaves large quantities of thermally or mechanically unstable austenite. Such austenite is not effective in delaying the onset of plastic instabilities during the course of deformation. In such circumstances, it is useful to conduct isothermal transformation at a high temperature where the rate of reaction is relatively rapid, followed by a lower temperature step that permits more bainite to be generated. This in turn increases the stability of the refined austenite, which then transforms gently over a large range of strain during a tensile test. A significant corollary is that the two-step heat treatments are unnecessary in low-carbon steels, where the bainite reaction is able to proceed to a greater extent before reaching the thermodynamic limit. Furthermore, the two-step process can be counterproductive in low carbon steel, because the austenite content is reduced to a level below which it does not enhance the mechanical properties. Other circumstances in which multiple heat treatments are necessary are also discussed.The authors are grateful to POSCO for support through Steel
Innovation Programme, and to the World Class University Programme of the National
Research Foundation of Korea, Ministry of Education, Science and Technology, project
number R32-2008-000-10147.This is the accepted manuscript version. The final published version is available from Springer at http://link.springer.com/article/10.1007%2Fs11661-014-2405-z
- …