7 research outputs found

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    High fluence effects on silicon detectors: An overview of the state of the art of radiation resistant detector characterisation by the CERN RD50 collaboration

    No full text
    The CERN RD50 collaboration has the aim to investigate radiation hard semiconductor devices for very high luminosity colliders. This is done by looking into four key aspects: Defect/material characterization, detector characterization, new structures and full detector systems. After the Phase II upgrade of the Large Hadron Collider (LHC) the luminosity will increase and therefore the radiation level for the silicon detectors. They have to be able to operate at fluences of up to 2×1016neq/cm22 \times 10^{16} \rm{n}_{eq} / \rm{cm}^2. To cope with this, new semiconductor sensor technologies have been developed. This article will give a brief overview of the latest results of the RD50 collaboration for the characterization of 3D detectors, HV-CMOS pixel detectors, low gain avalanche detectors (LGAD) and sensors with slim/active edge

    The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

    No full text
    The ATLAS experiment at the Large Hadron Collider is currently preparing for a major upgrade of the Inner Tracking for the Phase-II LHC operation (known as HL-LHC), scheduled to start in 2026. In order to achieve the integrated luminosity of 4000 fb −1 , the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. The radiation damage at the full integrated luminosity implies integrated hadron fluencies over 2×10 16 n eq /cm 2 requiring a completed replacement of the existing Inner Detector. Anall-siliconInnerTracker(ITk)isunderdevelopmentwithapixeldetectorsurrounded by a strip detector, aiming to provide increased tracking coverage up to | η |=4. The current prototyping, targeting an ITk Strip Detector system consisting of four barrel layers in the centre and forward regions composed of six disks at each end, is described in the ATLAS Inner Tracker Strip Detector Technical Design Report (TDR). With the recent final approval of the ITk strip TDR by the CERN Research Board, the prototyping phase is coming to an end and the pre-productionreadiness phase has started at the institutes involved. In this contribution an overview of the ITk strip detecot components is given, including measure- mentsofpartsirradiatedwitharangeoffluencesreachinguptotheHL-LHCdoses, demonstrating the excellent radiation hardness achieved

    The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

    No full text
    The ATLAS experiment at the Large Hadron Collider is currently preparing for a major upgrade of the Inner Tracking for the Phase-II LHC operation (known as HL-LHC), scheduled to start in 2026. In order to achieve the integrated luminosity of 4000 fb-1, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. The radiation damage at the full integrated luminosity implies integrated hadron fluencies over 2x10^16 neq/cm2 requiring a completed replacement of the existing Inner Detector. An all-silicon Inner Tracker (ITk) is under development with a pixel detector surrounded by a strip detector, aiming to provide increased tracking coverage up to |η|=4. The current prototyping, targeting an ITk Strip Detector system consisting of four barrel layers in the centre and forward regions composed of six disks at each end, is described in the ATLAS Inner Tracker Strip Detector Technical Design Report (TDR). With the recent final approval of the ITk strip TDR by the CERN Research Board, the prototyping phase is coming to an end and the pre-production readiness phase has started at the institutes involved. In this contribution we present the design of the ITk Strip Detector. We will give an extended summary of the R&D results achieved, including a wide set of measurements with detectors for several vendors, and irradiated with a range of fluencies and reaching up to to HL-LHC doses, demonstrating the excellent radiation hardness achieved. In addition, we will outline the current status of prototyping on various detector components, with a particular emphasis on the radiation-hard sensors, ASICs and front-end electronics under development. We will also discuss the status of preparations and the plans for the forth-coming pre-production and production phase

    Front-end Electronics of the Forward Strip Detector for the ATLAS HL-LHC Upgrade

    No full text
    The ATLAS Experiment will upgrade its central tracking detector with an all-silicon Inner Tracker(ITk) for the HL-LHC, comprising pixel and strip detectors. The strip detector is based on siliconstrip sensors, which are read out by low mass, radiation hard circuits carrying custom designedradiation hard ASICs in 130 nm technology. The circuits are made from flexible PCB multi-layercopper polyimide constructions. The ASICs are glued onto the flex and connections are madeby wire-bonding. This contribution discusses the evolution and electrical performance of varioushybrid prototypes necessary to equip the forward region of the detector, as well as their finaldevelopment

    Testbeam evaluation of silicon strip modules for ATLAS Phase - II Strip Tracker Upgrade

    No full text
    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of \mbox{7.5×1034  cm2s17.5\times10^{34}\;\mathrm{cm}^{-2}\mathrm{s}^{-1}}. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x10151x10^{15} 1 MeV neutron equivalent per cm2cm^{2} in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II test beam facility to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before irradiation. The DURANTA telescope was used to obtain a pointing resolution of 2μ\mum, with an additional pixel layer installed to improve timing resolution to \sim25ns. Results will show that prior to irradiation a wide range of thresholds (0.5-2.0 fC) meet the requirements of a noise occupancy less than 1x1031x10^{-3} and a hit efficiency greater than 99\%

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    No full text
    For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests
    corecore