4 research outputs found

    Immune-checkpoint proteins, cytokines, and microbiome impact on patients with cervical insufficiency and preterm birth

    Get PDF
    BackgroundMicroenvironmental factors, including microbe-induced inflammation and immune-checkpoint proteins that modulate immune cells have been associated with both cervical insufficiency and preterm delivery. These factors are incompletely understood. This study aimed to explore and compare interactions among microbiome and inflammatory factors, such as cytokines and immune-checkpoint proteins, in patients with cervical insufficiency and preterm birth. In particular, factors related to predicting preterm birth were identified and the performance of the combination of these factors was evaluated.MethodsA total of 220 swab samples from 110 pregnant women, prospectively recruited at the High-Risk Maternal Neonatal Intensive Care Center, were collected between February 2020 and March 2021. This study included 63 patients with cervical insufficiency receiving cerclage and 47 control participants. Endo- and exocervical swabs and fluids were collected simultaneously. Shotgun metagenomic sequencing for the microbiome and the measurement of 34 immune-checkpoint proteins and inflammatory cytokines were performed.ResultsFirst, we demonstrated that immune-checkpoint proteins, the key immune-regulatory molecules, could be measured in endocervical and exocervical samples. Secondly, we identified significantly different microenvironments in cervical insufficiency and preterm birth, with precise cervical locations, to provide information about practically useful cervical locations in clinical settings. Finally, the presence of Moraxella osloensis (odds ratio = 14.785; P = 0.037) and chemokine CC motif ligand 2 levels higher than 73 pg/mL (odds ratio = 40.049; P = 0.005) in endocervical samples were associated with preterm birth. Combining M. osloensis and chemokine CC motif ligand 2 yielded excellent performance for predicting preterm birth (area under the receiver operating characteristic curve = 0.846, 95% confidence interval = 0.733-0.925).ConclusionMultiple relationships between microbiomes, immune-checkpoint proteins, and inflammatory cytokines in the cervical microenvironment were identified. We focus on these factors to aid in the comprehensive understanding and therapeutic modulation of local microbial and immunologic compositions for the management of cervical insufficiency and preterm birth

    Strong Rashba parameter of two-dimensional electron gas at CaZrO3/SrTiO3 heterointerface

    No full text
    Abstract We synthesized a CaZrO3/SrTiO3 oxide heterostructure, which can serve as an alternative to LaAlO3/SrTiO3, and confirmed the generation of 2-dimensional electron gas (2-DEG) at the heterointerface. We analyzed the electrical-transport properties of the 2-DEG to elucidate its intrinsic characteristics. Based on the magnetic field dependence of resistance at 2 K, which exhibited Weak Anti-localization (WAL) behaviors, the fitted Rashba parameter values were found to be about 12–15 × 10–12 eV*m. These values are stronger than the previous reported Rashba parameters obtained from the 2-DEGs in other heterostructure systems and several layered 2D materials. The observed strong spin–orbit coupling (SOC) is attributed to the strong internal electric field generated by the lattice mismatch between the CaZrO3 layer and SrTiO3 substrate. This pioneering strong SOC of the 2-DEG at the CaZrO3/SrTiO3 heterointerface may play a pivotal role in the developing future metal oxide-based quantum nanoelectronics devices

    Operando Spatial Pressure Mapping Analysis for Prototype Lithium Metal Pouch Cells Under Practical Conditions

    No full text
    Monitoring and diagnosing the battery status in real-time are of utmost importance for clarifying failure mechanism, improving battery performance, and ensuring safety, particularly under fast charging conditions. Recently, advanced operando techniques have been developed to observe changes in the microstructures of lithium deposits using laboratory-scale cell designs, focusing on understanding the nature of Li metal electrodes. However, the macroscopic spatial inhomogeneity of lithium electroplating/stripping in the prototype pressurized pouch cells has not been measured in real-time under practical conditions. Herein, a new noninvasive operando technique, spatial pressure mapping analysis, is introduced to macroscopically and quantitatively measure spatial pressure changes in a pressurized pouch cell during cycling. Moreover, dynamic spatial changes in the macroscopic morphology of the lithium metal electrode are theoretically visualized by combining operando pressure mapping data with mechanical analyses of cell components. Additionally, under fast charging conditions, the direct correlation between abrupt capacity fading and sudden increases in spatial pressure distribution inhomogeneity is demonstrated through comparative analysis of pouch cells under various external pressures, electrolyte species, and electrolyte weight to cell capacity (e/c) ratios. This operando technique provides insights for assessing the current battery status and understanding the complex origin of cell degradation behavior in pressurized pouch cells. Operando technique of spatial pressure mapping analysis is demonstrated to macroscopically and quantitatively measure pressure inhomogeneities and lithium metal morphology evolutions in pressurized Li | LiNi0.8Mn0.1Co0.1O2 (NMC811) pouch cells. The standard deviation of pressure distribution, obtained from the operando spatial pressure mapping analysis is considered a new indicator for determining the state-of-health of a battery, particularly under fast charging conditions.imageY
    corecore