7 research outputs found

    Benchmarking CRISPR-BP34 for point-of-care melioidosis detection in low-income and middle-income countries: a molecular diagnostics study

    Get PDF
    Background: Melioidosis is a neglected but often fatal tropical disease. The disease has broad clinical manifestations, which makes diagnosis challenging and time consuming. To improve diagnosis, we aimed to evaluate the performance of the CRISPR-Cas12a system (CRISPR-BP34) to detect Burkholderia pseudomallei DNA across clinical specimens from patients suspected to have melioidosis. Methods: We conducted a prospective, observational cohort study of adult patients (aged ≥18 years) with melioidosis at Sunpasitthiprasong Hospital, a tertiary care hospital in Thailand. Participants were eligible for inclusion if they had culture-confirmed B pseudomallei infection from any clinical samples. Data were collected from patient clinical records and follow-up telephone calls. Routine clinical samples (blood, urine, respiratory secretion, pus, and other body fluids) were collected for culture. We documented time taken for diagnosis, and mortality at day 28 of follow-up. We also performed CRISPR-BP34 detection on clinical specimens collected from 330 patients with suspected melioidosis and compared its performance with the current gold-standard culture-based method. Discordant results were validated by three independent qualitative PCR tests. This study is registered with the Thai Clinical Trial Registry, TCTR20190322003. Findings: Between Oct 1, 2019, and Dec 31, 2022, 876 patients with culture-confirmed melioidosis were admitted or referred to Sunpasitthiprasong Hospital, 433 of whom were alive at diagnosis and were enrolled in this study. Median time from sample collection to diagnosis by culture was 4·0 days (IQR 3·0–5·0) among all patients with known survival status at day 28, which resulted in delayed treatment. 199 (23%) of 876 patients died before diagnosis and 114 (26%) of 433 patients in follow-up were treated, but died within 28 days of admission. To test the CRISPR-BP34 assay, we enrolled and collected clinical samples from 114 patients with melioidosis and 216 patients without melioidosis between May 26 and Dec 31, 2022. Application of CRISPR-BP34 reduced the median sample-to-diagnosis time to 1·1 days (IQR 0·7–1·5) for blood samples, 2·3 h (IQR 2·3–2·4) for urine, and 3·3 h (3·1–3·4) for respiratory secretion, pus, and other body fluids. The overall sensitivity of CRISPR-BP34 was 93·0% (106 of 114 samples [95% CI 86·6–96·9]) compared with 66·7% (76 of 114 samples [57·2–75·2]) for culture. The overall specificity of CRISPR-BP34 was 96·8% (209 of 216 samples [95% CI 93·4–98·7]), compared with 100% (216 of 216 samples [98·3–100·0]) for culture. Interpretation: The sensitivity, specificity, speed, and window of clinical intervention offered by CRISPR-BP34 support its prospective use as a point-of-care diagnostic tool for melioidosis. Future development should be focused on scalability and cost reduction

    Effectiveness of a Simplified Method for Isolation of Burkholderia pseudomallei from Soil

    No full text
    Detection of environmental Burkholderia pseudomallei indicates a risk for melioidosis and is important for the development of a global risk map. We describe a simple method for detecting B. pseudomallei using direct culture of soil in enrichment broth. This gives a rate of positivity comparable to that obtained with a standard method but is cheaper and labor saving

    Multiple phylogenetically-diverse, differentially-virulent Burkholderia pseudomallei isolated from a single soil sample collected in Thailand.

    Get PDF
    Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and northern Australia that causes the disease, melioidosis. Although the global genomic diversity of clinical B. pseudomallei isolates has been investigated, there is limited understanding of its genomic diversity across small geographic scales, especially in soil. In this study, we obtained 288 B. pseudomallei isolates from a single soil sample (~100g; intensive site 2, INT2) collected at a depth of 30cm from a site in Ubon Ratchathani Province, Thailand. We sequenced the genomes of 169 of these isolates that represent 7 distinct sequence types (STs), including a new ST (ST1820), based on multi-locus sequence typing (MLST) analysis. A core genome SNP phylogeny demonstrated that all identified STs share a recent common ancestor that diverged an estimated 796-1260 years ago. A pan-genomics analysis demonstrated recombination between clades and intra-MLST phylogenetic and gene differences. To identify potential differential virulence between STs, groups of BALB/c mice (5 mice/isolate) were challenged via subcutaneous injection (500 CFUs) with 30 INT2 isolates representing 5 different STs; over the 21-day experiment, eight isolates killed all mice, 2 isolates killed an intermediate number of mice (1-2), and 20 isolates killed no mice. Although the virulence results were largely stratified by ST, one virulent isolate and six attenuated isolates were from the same ST (ST1005), suggesting that variably conserved genomic regions may contribute to virulence. Genomes from the animal-challenged isolates were subjected to a bacterial genome-wide association study to identify genomic regions associated with differential virulence. One associated region is a unique variant of Hcp1, a component of the type VI secretion system, which may result in attenuation. The results of this study have implications for comprehensive sampling strategies, environmental exposure risk assessment, and understanding recombination and differential virulence in B. pseudomallei

    BurkHostGEN: a study protocol for evaluating variations in the Burkholderia pseudomallei and host genomes associated with melioidosis infection [version 2; peer review: 2 approved]

    Get PDF
    Background Melioidosis is a frequently fatal disease caused by an environmental bacterium Burkholderia pseudomallei. The disease is prevalent in northeast Thailand, particularly among rice field farmers who are at risk of bacterial exposure through contact with contaminated soil and water. However, not all exposure results in disease, and infection can manifest diverse outcomes. We postulate that genetic factors, whether from the bacterium, the host or the combination of both, may influence disease outcomes. To address this hypothesis, we aim to collect, sequence, and analyse genetic data from melioidosis patients and controls, along with isolates of B. pseudomallei obtained from patients. Additionally, we will study the metagenomics of the household water supply for both patients and controls, including the presence of B. pseudomallei. Methods BurkHostGEN is an ongoing observational study being conducted at Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand. We are obtaining consent from 600 melioidosis patients and 700 controls, spanning both sexes, to collect 1 mL of blood for host DNA analysis, 3 mL of blood for RNA analysis, as well as 5 L of household water supply for metagenomic analysis. Additionally, we are isolating B. pseudomallei from the melioidosis patients to obtain bacterial DNA. This comprehensive approach will allow us to identify B. pseudomallei and their paired host genetic factors associated with disease acquisition and severity. Ethical approvals have been obtained for BurkHostGEN. Host and bacterial genetic data will be uploaded to European Genome-Phenome Archive (EGA) and European Nucleotide Archive (ENA), respectively. Conclusions BurkHostGEN holds the potential to discover bacterial and host genetic factors associated with melioidosis infection and severity of illness. It can also support various study designs, including biomarker validation, disease pathogenesis, and epidemiological analysis not only for melioidosis but also for other infectious diseases
    corecore