3 research outputs found

    Polymer-fluorinated silica composite hollow fiber membranes for the recovery of biogas dissolved in anaerobic effluent

    No full text
    In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor system for the recovery of methane dissolved in the anaerobic effluent. Such composite membranes allowed us to tailor the physical property such as porosity and mechanical strength and the surface hydrophobicity in separated processes. To develop the composite membranes, porous hollow fiber substrates were first fabricated with Matrimid®, a commercial polyimide. Subsequently, fluorinated silica particles were synthesized and anchored on the substrates via a strong covalent bonding. Due to the high porosity as well as the high hydrophobicity, our membrane showed an outstanding performance for the recovery of CH4 in the membrane contactor, such that the CH4 flux reached 2900 mg CH4/m2–h at the liquid velocity of 0.42 m/s at which the liquid phase still controlled the overall mass transfer. The composite membrane prepared in this work also showed a much better performance in the CH4 recovery than a commercial polypropylene membrane made for degasification of water. In addition, a long-term test with tap water saturated with the model biogas made up of 60:40 CH4/CO2 mixture demonstrated that our membrane can be stably operated for more than 300 h without experiencing pore wetting problem.NRF (Natl Research Foundation, S’pore)EDB (Economic Devt. Board, S’pore)Accepted versio

    Transport properties of CO2 and CH4 in hollow fiber membrane contactor for the recovery of biogas from anaerobic membrane bioreactor effluent

    No full text
    A significant amount of methane (CH4) produced from anaerobic digestions of wastewater is dissolved in liquid effluent and discharged. The recovery of dissolved CH4 is therefore essential in ensuring an enhanced energy production of the anaerobic processes, and minimizing environmental impacts of the greenhouse gas. In this work, a membrane contactor is employed as a mass transfer equipment for the CH4 recovery. A mathematical model considering simultaneous desorption of CH4 and carbon dioxide (CO2) is developed using a resistance-in-series model to calculate the overall mass transfer coefficients. The simulations were validated with experimental results obtained using an in-house fabricated hollow fiber membrane as well as a real effluent from Anaerobic Membrane Bioreactor (AnMBR) and synthetic effluent made of water saturated with biogas. Results showed that the CO2 fluxes were higher than those of CH4 fluxes due to its higher concentration in liquid phase. A decrease of liquid phase mass transfer resistance by an increase in liquid velocity significantly enhanced both CH4 and CO2 fluxes. While, an increase in gas velocity slightly affected the CH4 flux but enhanced the CO2 flux considerably. It was also found that the CO2 desorption increased the CH4 recovery rate. The desorbed CO2 helped to increase the mass transfer driving force by reducing the partial pressure of CH4 in the gas side, and enhancing the gas phase mass transfer coefficient to facilitate CH4 desorption. The increase of liquid velocity increased mole fraction of CH4 in the gas outlet but decreased the rate of CH4 recovery. On the other hand, applying vacuum conditions to decrease gas pressure enhanced the rate of CH4 recovery but lower the CH4 mole fraction in the product gas.NRF (Natl Research Foundation, S’pore)EDB (Economic Devt. Board, S’pore)Accepted versio

    Unique roles of aminosilane in developing anti-fouling thin film composite (TFC) membranes for pressure retarded osmosis (PRO)

    No full text
    Pressure retarded osmosis (PRO) has been identified as a promising technology to harvest the salinity gradient energy. For practical applications of PRO process, membrane fouling is a challenging issue as it leads to severe decline of PRO performance in terms of water flux and power density. It is imperative to develop anti-fouling membranes for PRO process. The current study demonstrated the unique roles and the great potential of aminosilane in developing anti-fouling thin film composite (TFC) PRO membranes. Experimental results revealed that aminosilane as a grafting agent can modify both the support layer (interior) and the selective layer of PRO membranes with remarkably enhanced hydrophilicity via a very simple grafting procedure. In the grafting, aminosilane was able to minimize the pore-blocking issue with almost no increase in the membrane structural parameter (S). Meanwhile, the membrane mechanical strength was well maintained with the grafting due to the capability of aminosilane as a cross-linker. With enhanced hydrophilicity, it was interestingly found that the water permeability (A) was doubled, while the salt rejection was maintained nearly unchanged. The combination of these effects brought in remarkably enhanced water flux, power density and anti-fouling property to the resultant membrane.EDB (Economic Devt. Board, S’pore)NRF (Natl Research Foundation, S’pore)Accepted versio
    corecore