434 research outputs found
Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators
The inorganic crystal scintillator CsI(Tl) has been used for low energy
neutrino and Dark Matter experiments, where the intrinsic radiopurity is an
issue of major importance. Low-background data were taken with a CsI(Tl)
crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape
discrimination capabilities of the crystal, as well as the temporal and spatial
correlations of the events, provide powerful means of measuring the intrinsic
radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event
selection algorithms are described, with which the decay half-lives of Po-218,
Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the
contamination levels, their concentration gradients with the crystal growth
axis, and the uniformity among different crystal samples, are reported. The
radiopurity in the U-238 and Th-232 series are comparable to those of the best
reported in other crystal scintillators. Significant improvements in
measurement sensitivities were achieved, similar to those from dedicated
massive liquid scintillator detector. This analysis also provides in situ
measurements of the detector performance parameters, such as spatial
resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
The synergistic effect of cation mixing in mesoporous BixFe1 xVO4 heterojunction photoanodes for solar water splitting
Mixed metal vanadates are an interesting class of materials due to their favorable bandgap for visible light absorption and their catalytic activity. Here, we report a novel BixFe1 amp; 8722;xVO4 mixture system fabricated by electrospinning, which upon annealing is composed of triclinic FeVO4 and monoclinic BiVO4 phases. The mixture demonstrates extended optical absorption and a clear bandgap shift as compared with a pure BiVO4. This is also accompanied by an extended wavelength range for its photoactivity as evident from the incident photon to current efficiency. In addition, the mixture with a Bi Bi Fe ratio of 0.5 i.e., x 0.5 shows superior charge transfer and charge separation efficiency. The improved charge transfer efficiency is attributed to the higher catalytic activity of the mixed cation, while the presence of a BiVO4 FeVO4 heterojunction enhances the charge separation. The formation of the heterojunction is verified through detailed microscopic investigations revealing BiVO4 particles intimately surrounded by FeVO4. Our results demonstrate the advantage of establishing a mixture of complex metal oxides in extending optical absorption and boosting the photoelectrochemical performanc
Cytokine and Chemokine Profiling in Patients with Hand, Foot and Mouth Disease in Singapore and Malaysia
Hand, foot and mouth disease (HFMD) is a prevalent contagious childhood disease typically associated with fever, oral lesions and limb exanthema. While HFMD is caused by a plethora of serotypes of viruses under the genus Enterovirus within the Picornaviridae family, Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV-A71) are considered the main etiological agents. In recent years however, other viruses have also been isolated in considerable numbers from infected individuals in many regions, joining the legion commonly associated with HFMD. The present study investigated the cytokine and chemokine profiles of HFMD patients from Singapore and Malaysia for the first time. Comparative cohort studies of EV-A71-associated HFMD cases revealed that the Malaysia cohort had a distinct profile from the Singapore cohort, and this could be partly attributed by different EV-A71 genotypes. As the isolation of CV-A6, instead of CV-A16, had become prevalent in the Singapore cohort, it was also of particular interest to study the differential cytokine and chemokine profiles. Our data revealed that overlapping as well as unique profiles exist between the two major causative clinical isolates in the Singapore cohort. Having a better understanding of the respective immunological profiles could be useful for more accurate HFMD diagnosis, which is imperative for disease transmission control until multi-valent vaccines and/or broad-spectrum anti-viral drugs become available
Should the ultrasound probe replace your stethoscope? A SICS-I sub-study comparing lung ultrasound and pulmonary auscultation in the critically ill
BACKGROUND:
In critically ill patients, auscultation might be challenging as dorsal lung fields are difficult to reach in supine-positioned patients, and the environment is often noisy. In recent years, clinicians have started to consider lung ultrasound as a useful diagnostic tool for a variety of pulmonary pathologies, including pulmonary edema. The aim of this study was to compare lung ultrasound and pulmonary auscultation for detecting pulmonary edema in critically ill patients.
METHODS:
This study was a planned sub-study of the Simple Intensive Care Studies-I, a single-center, prospective observational study. All acutely admitted patients who were 18 years and older with an expected ICU stay of at least 24 h were eligible for inclusion. All patients underwent clinical examination combined with lung ultrasound, conducted by researchers not involved in patient care. Clinical examination included auscultation of the bilateral regions for crepitations and rhonchi. Lung ultrasound was conducted according to the Bedside Lung Ultrasound in Emergency protocol. Pulmonary edema was defined as three or more B lines in at least two (bilateral) scan sites. An agreement was described by using the Cohen κ coefficient, sensitivity, specificity, negative predictive value, positive predictive value, and overall accuracy. Subgroup analysis were performed in patients who were not mechanically ventilated.
RESULTS:
The Simple Intensive Care Studies-I cohort included 1075 patients, of whom 926 (86%) were eligible for inclusion in this analysis. Three hundred seven of the 926 patients (33%) fulfilled the criteria for pulmonary edema on lung ultrasound. In 156 (51%) of these patients, auscultation was normal. A total of 302 patients (32%) had audible crepitations or rhonchi upon auscultation. From 130 patients with crepitations, 86 patients (66%) had pulmonary edema on lung ultrasound, and from 209 patients with rhonchi, 96 patients (46%) had pulmonary edema on lung ultrasound. The agreement between auscultation findings and lung ultrasound diagnosis was poor (κ statistic 0.25). Subgroup analysis showed that the diagnostic accuracy of auscultation was better in non-ventilated than in ventilated patients.
CONCLUSION:
The agreement between lung ultrasound and auscultation is poor
Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos
Light sterile neutrinos with masses at the sub-eV or eV scale are hinted by
current experimental and cosmological data. Assuming the Majorana nature of
these hypothetical particles, we discuss their effects in the neutrinoless
double beta decay by exploring the implications of a vanishing effective
Majorana neutrino mass. Allowed ranges of neutrino masses, mixing angles and
Majorana CP-violating phases are illustrated in some instructive cases for both
normal and inverted mass hierarchies of three active neutrinos.Comment: 14 pages, 4 figures, more discussions and references added, accepted
for publication in PL
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model
10.1007/s11373-006-9082-xJournal of Biomedical Science134579-59
- …