14 research outputs found
Phase I Trial of Single-Photon Emission Computed Tomography-Guided Liver-Directed Radiotherapy for Patients With Low Functional Liver Volume
BACKGROUND: Traditional constraints specify that 700âcc of liver should be spared a hepatotoxic dose when delivering liver-directed radiotherapy to reduce the risk of inducing liver failure. We investigated the role of single-photon emission computed tomography (SPECT) to identify and preferentially avoid functional liver during liver-directed radiation treatment planning in patients with preserved liver function but limited functional liver volume after receiving prior hepatotoxic chemotherapy or surgical resection.
METHODS: This phase I trial with a 3â+â3 design evaluated the safety of liver-directed radiotherapy using escalating functional liver radiation dose constraints in patients with liver metastases. Dose-limiting toxicities were assessed 6-8âweeks and 6âmonths after completing radiotherapy.
RESULTS: All 12 patients had colorectal liver metastases and received prior hepatotoxic chemotherapy; 8 patients underwent prior liver resection. Median computed tomography anatomical nontumor liver volume was 1584âcc (range = 764-2699âcc). Median SPECT functional liver volume was 1117âcc (range = 570-1928 cc). Median nontarget computed tomography and SPECT liver volumes below the volumetric dose constraint were 997âcc (range = 544-1576âcc) and 684âcc (range = 429-1244âcc), respectively. The prescription dose was 67.5-75âGy in 15 fractions or 75-100âGy in 25 fractions. No dose-limiting toxicities were observed during follow-up. One-year in-field control was 57%. One-year overall survival was 73%.
CONCLUSION: Liver-directed radiotherapy can be safely delivered to high doses when incorporating functional SPECT into the radiation treatment planning process, which may enable sparing of lower volumes of liver than traditionally accepted in patients with preserved liver function.
TRIAL REGISTRATION: NCT02626312
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTICâHF: baseline characteristics and comparison with contemporary clinical trials
Aims:
The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTICâHF) trial. Here we describe the baseline characteristics of participants in GALACTICâHF and how these compare with other contemporary trials.
Methods and Results:
Adults with established HFrEF, New York Heart Association functional class (NYHA)ââ„âII, EF â€35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokineticâguided dosing: 25, 37.5 or 50âmg bid). 8256 patients [male (79%), nonâwhite (22%), mean age 65âyears] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NTâproBNP 1971âpg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTICâHF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressureâ<â100âmmHg (n = 1127), estimated glomerular filtration rate <â30âmL/min/1.73 m2 (n = 528), and treated with sacubitrilâvalsartan at baseline (n = 1594).
Conclusions:
GALACTICâHF enrolled a wellâtreated, highârisk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation
Recommended from our members
An open-label, single-arm pilot study of EUS-guided brachytherapy with phosphorus-32 microparticles in combination with gemcitabine +/- nab-paclitaxel in unresectable locally advanced pancreatic cancer (OncoPaC-1): Technical details and study protocol.
Current treatment options for patients with unresectable locally advanced pancreatic cancer (LAPC) include chemotherapy alone or followed by chemoradiation or stereotactic body radiotherapy. However, the prognosis for these patients remains poor, with a median overall survival <12 months. Therefore, novel treatment options are needed. Currently, there is no brachytherapy device approved for pancreatic cancer treatment. Hereby, we present the protocol of a prospective, multicenter, interventional, open-label, single-arm pilot study (OncoPac-1, Clinicaltrial.gov-NCT03076216) aiming to determine the safety and efficacy of Phosphorus-32 when implanted directly into pancreatic tumors using EUS guidance, for patients with unresectable LAPC undergoing chemotherapy (gemcitabine ± nab-paclitaxel)
Discovery of a Potent Small-Molecule Antagonist of Inhibitor of Apoptosis (IAP) Proteins and Clinical Candidate for the Treatment of Cancer (GDC-0152)
A series of compounds were designed and synthesized as
antagonists of cIAP1/2, ML-IAP, and XIAP based on the N-terminus,
AVPI, of mature Smac. Compound <b>1</b> (GDC-0152) has the best
profile of these compounds; it binds to the XIAP BIR3 domain, the
BIR domain of ML-IAP, and the BIR3 domains of cIAP1 and cIAP2 with <i>K</i><sub><i>i</i></sub> values of 28, 14, 17, and
43 nM, respectively. These compounds promote degradation of cIAP1,
induce activation of caspase-3/7, and lead to decreased viability
of breast cancer cells without affecting normal mammary epithelial
cells. Compound <b>1</b> inhibits tumor growth when dosed orally
in the MDA-MB-231 breast cancer xenograft model. Compound <b>1</b> was advanced to human clinical trials, and it exhibited linear pharmacokinetics
over the dose range (0.049 to 1.48 mg/kg) tested. Mean plasma clearance
in humans was 9 ± 3 mL/min/kg, and the volume of distribution
was 0.6 ± 0.2 L/kg